includeNegativeGrowthFlag=False try: opts, args = getopt.getopt(sys.argv[1:], 'fn', ['force-manual', 'negative']) for o, a in opts: if o in ("-f", "--force-manual"): forceManualFlag = True elif o in ('-n', '--negative'): includeNegativeGrowthFlag = True except: print 'ERROR: only flags admitted are -f [--force-manual] and -n [--negative].' sys.exit() runningFlags=[forceManualFlag,includeNegativeGrowthFlag] # 1. data reading data300 = library.dataReader('data/300ppmSetsLight.v2.txt') data1000 = library.dataReader('data/1000ppmSetsLight.v2.txt') # 2. calculating the max growth rates print 'fitting data for 300 pppm...' maxGrowthRates300, uvValues300, growthLag300, recovery300 = library.characteristicParameterFinder(data300,runningFlags) print print 'fitting data for 1,000 pppm...' maxGrowthRates1000, uvValues1000, growthLag1000, recovery1000 = library.characteristicParameterFinder(data1000,runningFlags) # 3. plotting print print 'plotting the figure...' figureFile='results/figureTPT'
matplotlib.pyplot.ylim([-0.5e5, 10e5]) matplotlib.pyplot.xlabel('time (days)') matplotlib.pyplot.ylabel('number of cells (x 1e5)') matplotlib.pyplot.yticks( (0, 1e5, 2e5, 3e5, 4e5, 5e5, 6e5, 7e5, 8e5, 9e5, 10e5), ('0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10')) matplotlib.pyplot.legend(numpoints=1, loc=1, frameon=False) matplotlib.pyplot.savefig(figureFile) matplotlib.pyplot.clf() return None ### MAIN # 1. data reading data300 = library.dataReader('../data/300ppmSet3.txt') data1000 = library.dataReader('../data/1000ppmSet3.txt') # 2. fitting the data to sigmoidal function print 'fitting data for 300 pppm...' dataGrapherEpocs(data300, '300') print print 'fitting data for 1000 ppm...' dataGrapherEpocs(data1000, '1000') print '... graphs completed.'
localCells=dataStructure[epocLabel][1] highResolutionTime=numpy.linspace(min(shiftedTime),max(shiftedTime),resolution) if len(localCells) > 2: # dealing with sets of at least 2 data points print figureLabel+'_'+epocLabel,'\t', fittedTrajectory=library.dataFitter(shiftedTime,localCells) b=library.peval(highResolutionTime,fittedTrajectory[0]) checkFit(highResolutionTime,b,shiftedTime,localCells,figureLabel+'_'+epocLabel) return None ### MAIN # 1. data reading data300=library.dataReader('data/300ppmSet3.txt') data1000=library.dataReader('data/1000ppmSet3.txt') # 2. fitting the data to sigmoidal function print 'fitting data for 300 pppm...' dataGrapherSingle(data300,'300') print print 'fitting data for 1000 ppm...' dataGrapherSingle(data1000,'1000') print '... graphs completed.'
try: opts, args = getopt.getopt(sys.argv[1:], 'fn', ['force-manual', 'negative']) for o, a in opts: if o in ("-f", "--force-manual"): forceManualFlag = True elif o in ('-n', '--negative'): includeNegativeGrowthFlag = True except: print 'ERROR: only flags admitted are -f [--force-manual] and -n [--negative].' sys.exit() runningFlags = [forceManualFlag, includeNegativeGrowthFlag] # 1. data reading data300 = library.dataReader('data/300ppmSetsLight.v2.txt') data1000 = library.dataReader('data/1000ppmSetsLight.v2.txt') # 2. calculating the max growth rates print 'fitting data for 300 pppm...' maxGrowthRates300, uvValues300, growthLag300, recovery300 = library.characteristicParameterFinder( data300, runningFlags) print print 'fitting data for 1,000 pppm...' maxGrowthRates1000, uvValues1000, growthLag1000, recovery1000 = library.characteristicParameterFinder( data1000, runningFlags) # 3. plotting print print 'plotting the figure...'
generations=['n0','n50','n100','n150','n200','n250'] thresholds=thresholdsCase1.definer() ### working on each experiment x=[0,1,2,3,4,5] eps=0.0 barWidth=0.33 for i in range(len(thresholds)): # 1. reading data print print 'reading the data...' before=library.dataReader(case,generations[i],thresholds[i][0],'without') after=library.dataReader(case,generations[i],thresholds[i][1],'with') averagesBefore=[numpy.mean(element) for element in before] averagesAfter=[numpy.mean(element) for element in after] print averagesBefore print averagesAfter statistic,pvalue=scipy.stats.mannwhitneyu(averagesBefore,averagesAfter) print 'statistics:',statistic,pvalue xPos=x[i]-barWidth/2. increment=numpy.mean(averagesAfter)-numpy.mean(averagesBefore) noise=numpy.sqrt(numpy.var(averagesBefore)+numpy.var(averagesAfter))