Exemple #1
0
    def compute_pose_2d2d(self, kp_ref, kp_cur):
        """Compute the pose from view2 to view1
        Args:
            kp_ref (Nx2 array): keypoints for reference view
            kp_cur (Nx2 array): keypoints for current view
        Returns:
            pose (SE3): relative pose from current to reference view
            best_inliers (N boolean array): inlier mask
        """
        principal_points = (self.cam_intrinsics.cx, self.cam_intrinsics.cy)

        # initialize ransac setup
        best_Rt = []
        best_inlier_cnt = 0
        max_ransac_iter = self.cfg.compute_2d2d_pose.ransac.repeat
        best_inliers = np.ones((kp_ref.shape[0])) == 1

        # check flow magnitude
        avg_flow = np.mean(np.linalg.norm(kp_ref-kp_cur, axis=1))
        min_flow = self.cfg.compute_2d2d_pose.min_flow
        if avg_flow > min_flow:
            for i in range(max_ransac_iter): # repeat ransac for several times for stable result
                # shuffle kp_cur and kp_ref (only useful when random seed is fixed)
                new_list = np.random.randint(0, kp_cur.shape[0], (kp_cur.shape[0]))
                new_kp_cur = kp_cur.copy()[new_list]
                new_kp_ref = kp_ref.copy()[new_list]

                start_time = time()
                E, inliers = cv2.findEssentialMat(
                            new_kp_cur,
                            new_kp_ref,
                            focal=self.cam_intrinsics.fx,
                            pp=principal_points,
                            method=cv2.RANSAC,
                            prob=0.99,
                            threshold=self.cfg.compute_2d2d_pose.ransac.reproj_thre,
                            )
                cheirality_cnt, R, t, _ = cv2.recoverPose(E, new_kp_cur, new_kp_ref,
                                            focal=self.cam_intrinsics.fx,
                                            pp=principal_points,)
                self.timers.timers["Ess. Mat."].append(time()-start_time)
                if inliers.sum() > best_inlier_cnt and cheirality_cnt > 50:
                    best_Rt = [R, t]
                    best_inlier_cnt = inliers.sum()
                    best_inliers = inliers
            if len(best_Rt) == 0:
                R = np.eye(3)
                t = np.zeros((3,1))
                best_Rt = [R, t]
        else:
            R = np.eye(3)
            t = np.zeros((3,1))
            best_Rt = [R, t]
        R, t = best_Rt
        pose = SE3()
        pose.R = R
        pose.t = t
        return pose, best_inliers
Exemple #2
0
    def __init__(self, cfg):
        """
        Args:
            cfg (edict): configuration reading from yaml file
        """
        self.cam_intrinsics = Intrinsics()
        # predicted global poses
        self.global_poses = {0: SE3()}
        # tracking stage
        self.tracking_stage = 0
        # configuration
        self.cfg = cfg

        # visualization interface
        self.initialize_visualization_drawer()

        self.ref_data = {
            'id': [],
            'timestamp': {},
            'img': {},
            'depth': {},
            'raw_depth': {},
            'pose': {},
            'kp': {},
            'kp_best': {},
            'kp_list': {},
            'pose_back': {},
            'kp_back': {},
            'flow': {},  # from ref->cur
            'flow_diff': {},  # flow-consistency-error of ref->cur
        }
        self.cur_data = {
            'id': 0,
            'timestamp': 0,
            'img': np.zeros(1),
            'depth': np.zeros(1),
            'pose': np.eye(4),
            'kp': np.zeros(1),
            'kp_best': np.zeros(1),
            'kp_list': np.zeros(1),
            'pose_back': np.eye(4),
            'kp_back': np.zeros(1),
            'flow': {},  # from cur->ref
        }
Exemple #3
0
    def tracking_hybrid(self):
        """Tracking using both Essential matrix and PnP
        Essential matrix for rotation (and direction);
            *** triangluate depth v.s. CNN-depth for translation scale ***
        PnP if Essential matrix fails
        """
        # First frame
        if self.tracking_stage == 0:
            # initial
            self.cur_data['pose'] = SE3(self.gt_poses[self.cur_data['id']])
            self.tracking_stage = 1
            return

        # Second to last frames
        elif self.tracking_stage >= 1:
            # Flow-net for 2D-2D correspondence
            start_time = time()
            cur_data, ref_data = self.deep_flow_forward(
                self.cur_data,
                self.ref_data,
                forward_backward=self.cfg.deep_flow.forward_backward)
            self.timers.timers['Flow-CNN'].append(time() - start_time)

            for ref_id in self.ref_data['id']:
                # Compose hybrid pose
                hybrid_pose = SE3()

                # FIXME: add if statement for deciding which kp to use
                # Essential matrix pose
                E_pose, _ = self.compute_pose_2d2d(
                    cur_data['kp_best'],
                    ref_data['kp_best'][ref_id])  # pose: from cur->ref

                # Rotation
                hybrid_pose.R = E_pose.R

                # translation scale from triangulation v.s. CNN-depth
                if np.linalg.norm(E_pose.t) != 0:
                    scale = self.find_scale_from_depth(
                        cur_data['kp_best'], ref_data['kp_best'][ref_id],
                        E_pose.inv_pose, self.cur_data['depth'])
                    if scale != -1:
                        hybrid_pose.t = E_pose.t * scale

                # PnP if Essential matrix fail
                if np.linalg.norm(E_pose.t) == 0 or scale == -1:
                    pnp_pose, _, _ \
                        = self.compute_pose_3d2d(
                                    cur_data['kp_best'],
                                    ref_data['kp_best'][ref_id],
                                    ref_data['depth'][ref_id]
                                    ) # pose: from cur->ref
                    # use PnP pose instead of E-pose
                    hybrid_pose = pnp_pose
                    self.tracking_mode = "PnP"
                ref_data['pose'][ref_id] = copy.deepcopy(hybrid_pose)
                # ref_data['pose'][ref_id] = hybrid_pose

            self.ref_data = copy.deepcopy(ref_data)
            self.cur_data = copy.deepcopy(cur_data)

            # copy keypoint for visualization
            self.ref_data['kp'] = copy.deepcopy(ref_data['kp_best'])
            self.cur_data['kp'] = copy.deepcopy(cur_data['kp_best'])

            # update global poses
            pose = self.ref_data['pose'][self.ref_data['id'][-1]]
            self.update_global_pose(pose, 1)

            self.tracking_stage += 1
            del (ref_data)
            del (cur_data)
Exemple #4
0
    def compute_pose_3d2d(self, kp1, kp2, depth_1):
        """Compute pose from 3d-2d correspondences
        Args:
            kp1 (Nx2 array): keypoints for view-1
            kp2 (Nx2 array): keypoints for view-2
            depth_1 (HxW array): depths for view-1
        Returns:
            pose (SE3): relative pose from view-2 to view-1
            kp1 (Nx2 array): filtered keypoints for view-1
            kp2 (Nx2 array): filtered keypoints for view-2
        """
        height, width = depth_1.shape

        # Filter keypoints outside image region
        x_idx = (kp2[:, 0] >= 0) * (kp2[:, 0] < width)
        kp1 = kp1[x_idx]
        kp2 = kp2[x_idx]
        y_idx = (kp2[:, 1] >= 0) * (kp2[:, 1] < height)
        kp1 = kp1[y_idx]
        kp2 = kp2[y_idx]

        # Filter keypoints outside depth range
        kp1_int = kp1.astype(np.int)
        kp_depths = depth_1[kp1_int[:, 1], kp1_int[:, 0]]
        non_zero_mask = (kp_depths != 0)
        depth_range_mask = (kp_depths < self.cfg.depth.max_depth) * (
            kp_depths > self.cfg.depth.min_depth)
        valid_kp_mask = non_zero_mask * depth_range_mask

        kp1 = kp1[valid_kp_mask]
        kp2 = kp2[valid_kp_mask]

        # Get 3D coordinates for kp1
        XYZ_kp1 = unprojection_kp(kp1, kp_depths[valid_kp_mask],
                                  self.cam_intrinsics)

        # initialize ransac setup
        best_rt = []
        best_inlier = 0
        max_ransac_iter = self.cfg.PnP.ransac.repeat

        for i in range(max_ransac_iter):
            # shuffle kp_cur and kp_ref (only useful when random seed is fixed)
            new_list = np.random.randint(0, kp2.shape[0], (kp2.shape[0]))
            new_XYZ = XYZ_kp1.copy()[new_list]
            new_kp2 = kp2.copy()[new_list]

            if new_kp2.shape[0] > 4:
                flag, r, t, inlier = cv2.solvePnPRansac(
                    objectPoints=new_XYZ,
                    imagePoints=new_kp2,
                    cameraMatrix=self.cam_intrinsics.mat,
                    distCoeffs=None,
                    iterationsCount=self.cfg.PnP.ransac.iter,
                    reprojectionError=self.cfg.PnP.ransac.reproj_thre,
                )
                if flag and inlier.shape[0] > best_inlier:
                    best_rt = [r, t]
                    best_inlier = inlier.shape[0]
        pose = SE3()
        if len(best_rt) != 0:
            r, t = best_rt
            pose.R = cv2.Rodrigues(r)[0]
            pose.t = t
        pose.pose = pose.inv_pose
        return pose, kp1, kp2
Exemple #5
0
    def __init__(self, cfg):
        """
        Args:
            cfg (edict): configuration reading from yaml file
        """
        # camera intrinsics
        self.cam_intrinsics = Intrinsics()

        # predicted global poses
        self.global_poses = {0: SE3()}

        # tracking stage
        self.tracking_stage = 0

        # configuration
        self.cfg = cfg

        # window size and keyframe step
        self.window_size = 2
        self.keyframe_step = 1

        # visualization interface
        self.initialize_visualization_drawer()

        # timer
        self.timers = Timers()
        self.timers.add([
            "img_reading",
            "Depth-CNN",
            "tracking",
            "Ess. Mat.",
            "Flow-CNN",
            "visualization",
            "visualization_traj",
            "visualization_match",
            "visualization_flow",
            "visualization_depth",
            "visualization_save_img",
        ])

        # reference data and current data
        self.ref_data = {
            'id': [],
            'timestamp': {},
            'img': {},
            'depth': {},
            'raw_depth': {},
            'pose': {},
            'kp': {},
            'kp_best': {},
            'kp_list': {},
            'pose_back': {},
            'kp_back': {},
            'flow': {},  # from ref->cur
            'flow_diff': {},  # flow-consistency-error of ref->cur
        }
        self.cur_data = {
            'id': 0,
            'timestamp': 0,
            'img': np.zeros(1),
            'depth': np.zeros(1),
            'pose': np.eye(4),
            'kp': np.zeros(1),
            'kp_best': np.zeros(1),
            'kp_list': np.zeros(1),
            'pose_back': np.eye(4),
            'kp_back': np.zeros(1),
            'flow': {},  # from cur->ref
        }
Exemple #6
0
    def compute_pose_2d2d(self, kp_ref, kp_cur):
        """Compute the pose from view2 to view1
        Args:
            kp_ref (Nx2 array): keypoints for reference view
            kp_cur (Nx2 array): keypoints for current view
        Returns:
            pose (SE3): relative pose from current to reference view
            best_inliers (N boolean array): inlier mask
        """
        principal_points = (self.cam_intrinsics.cx, self.cam_intrinsics.cy)

        # validity check
        valid_cfg = self.cfg.compute_2d2d_pose.validity
        valid_case = True

        # initialize ransac setup
        best_Rt = []
        best_inlier_cnt = 0
        max_ransac_iter = self.cfg.compute_2d2d_pose.ransac.repeat
        best_inliers = np.ones((kp_ref.shape[0])) == 1

        if valid_cfg.method == "flow+chei":
            # check flow magnitude
            avg_flow = np.mean(np.linalg.norm(kp_ref-kp_cur, axis=1))
            min_flow = valid_cfg.min_flow
            valid_case = avg_flow > min_flow
        if valid_case:
            for i in range(max_ransac_iter): # repeat ransac for several times for stable result
                # shuffle kp_cur and kp_ref (only useful when random seed is fixed)
                new_list = np.random.randint(0, kp_cur.shape[0], (kp_cur.shape[0]))
                new_kp_cur = kp_cur.copy()[new_list]
                new_kp_ref = kp_ref.copy()[new_list]

                start_time = time()
                E, inliers = cv2.findEssentialMat(
                            new_kp_cur,
                            new_kp_ref,
                            focal=self.cam_intrinsics.fx,
                            pp=principal_points,
                            method=cv2.RANSAC,
                            prob=0.99,
                            threshold=self.cfg.compute_2d2d_pose.ransac.reproj_thre,
                            )
                
                # check homography inlier ratio
                if valid_cfg.method == "homo_ratio":
                    # Find homography
                    H, H_inliers = cv2.findHomography(
                                new_kp_cur,
                                new_kp_ref,
                                method=cv2.RANSAC,
                                confidence=0.99,
                                ransacReprojThreshold=0.2,
                                )
                    H_inliers_ratio = H_inliers.sum()/(H_inliers.sum()+inliers.sum())
                    valid_case = H_inliers_ratio < 0.25
                
                if valid_case:
                    cheirality_cnt, R, t, _ = cv2.recoverPose(E, new_kp_cur, new_kp_ref,
                                            focal=self.cam_intrinsics.fx,
                                            pp=principal_points,)
                    self.timers.timers["Ess. Mat."].append(time()-start_time)
                    
                    # check best inlier cnt
                    if valid_cfg.method == "flow+chei":
                        inlier_check = inliers.sum() > best_inlier_cnt and cheirality_cnt > 50
                    elif valid_cfg.method == "homo_ratio":
                        inlier_check = inliers.sum() > best_inlier_cnt
                    else:
                        assert False, "wrong cfg for compute_2d2d_pose.validity.method"
                    
                    if inlier_check:
                        best_Rt = [R, t]
                        best_inlier_cnt = inliers.sum()
                        best_inliers = inliers
            if len(best_Rt) == 0:
                R = np.eye(3)
                t = np.zeros((3, 1))
                best_Rt = [R, t]
        else:
            R = np.eye(3)
            t = np.zeros((3,1))
            best_Rt = [R, t]
        R, t = best_Rt
        pose = SE3()
        pose.R = R
        pose.t = t
        return pose, best_inliers