def detect_burr(data,
                pv,
                left=None,
                right=None,
                method=0,
                minimum_peak_distance=100):
    titles = data.columns
    titleList = titles.values.tolist()
    if pv in titleList:
        pvn = titleList.index(pv)
        sta = DisplayData.showStatistic(data)
        print("statistic data:")
        print(sta)
        # use boxplot define threshold
        iqr = sta.loc['75%'][titles[pvn]] - sta.loc['25%'][titles[pvn]]
        if left is None:
            left = sta.loc['25%'][titles[pvn]] - 1.5 * iqr
        if right is None:
            right = sta.loc['75%'][titles[pvn]] + 1.5 * iqr
        print('min edge:', left, 'max edge:', right)
        burrdata = data[((data[titles[pvn]]) < left) |
                        ((data[titles[pvn]]) > right)]
        LoadData.df2other(burrdata, 'csv', 'newfile.csv')
        y = data[titles[pvn]].values
        if method == 0:
            # find_peaks by scipy signal
            peaks, _ = signal.find_peaks(y, height=right)
            plt.plot(y, 'b', lw=1)
            plt.plot(peaks, y[peaks], "+", mec='r', mew=2, ms=8)
            plt.plot(np.zeros_like(y) + right, "--", color="gray")
            plt.title("find_peaks min_height:%7f" % right)
            plt.show()
        if method == 1:
            detect_peaks(y, mph=right, mpd=minimum_peak_distance, show=True)
        if method == 2:
            print('Detect peaks with minimum height and distance filters.')
            # thres=right/max(y)
            indexes = peakutils.peak.indexes(np.array(y),
                                             thres=right / max(y),
                                             min_dist=minimum_peak_distance)
            print('Peaks are: %s' % (indexes))
            plt.plot(y, 'b', lw=1)
            for i in indexes:
                plt.plot(i, y[i], "+", mec='r', mew=2, ms=8)
            plt.plot(np.zeros_like(y) + right, "--", color="gray")
            plt.title("peakutils.peak thres:%f ,minimum_peak_distance:%d" %
                      (right, minimum_peak_distance))
            plt.show()
    else:
        print("Wrong PV name, not in ", titleList)
Exemple #2
0
def extractFeatures(PPGdata):
    dataWindow = signal.medfilt(PPGdata, 3)

    # Power spectral density (self.sampleWindow/4 reading window, self.sampleWindow/(4*2) sequential window overlap)
    f, pxx = signal.welch(dataWindow, fs = 128, nperseg = 384/4)
    pxx = [10*np.log10(x) for x in pxx]

    # Mean amplitude of HF components (20 to 200Hz range)
    m = np.mean(pxx[20:200])

    # LF/HF component magnitude ratio
    lfhfratio = (pxx[1] + pxx[2]) / (pxx[4] + pxx[5])

    # Apply a 2nd order bandpass butterworth filter to attenuate heart rate components
    # other than heart signal's RR peaks.
    b, a = signal.butter(2, [1/100, 1/10], 'bandpass')
    dataWindow = signal.filtfilt(b, a, dataWindow)
    # Find the segment peaks' indices for peak occurrence variance feature.
    indices = detect_peaks.detect_peaks(dataWindow,mph = 0, mpd = 100,edge='rising',show=False)
    peakVariance = np.finfo(np.float64).max
    if len(indices) > 1:
        peakVariance = np.var(np.diff(indices))

    # Calculate the heart rate number from number of peaks and start:end timeframe
    timeDifferenceInMinutes =  384 / 128 / 60

    # print(timeDifferenceInMinutes)
    heartRate = float(len(indices)) / timeDifferenceInMinutes

    # features = [m, lfhfratio, peakVariance, heartRate]
    features = [m, lfhfratio, peakVariance, heartRate]


    return features
Exemple #3
0
def sliding_window(fseq, window_size=3000, moving_size=200):
    WinNum = int((len(fseq) - window_size) / moving_size + 1)
    feature_matrix = np.zeros((WinNum, 6))

    for i in range(int((len(fseq) - window_size) / moving_size + 1)):
        #        yield fseq[i*moving_size:i*moving_size+window_size]
        feature_matrix[i, 0] = np.mean(fseq[i * moving_size:i * moving_size +
                                            window_size])
        feature_matrix[i, 1] = np.std(fseq[i * moving_size:i * moving_size +
                                           window_size])
        #       p1 = peakdetect.peakdet(fseq[i*moving_size:i*moving_size+window_size], 30)
        #       feature_matrix[i,2] = math.floor((len(p1[0])+len(p1[1]))/2)
        #       new_p = get_br(0,window_size,1,fseq[i*moving_size:i*moving_size+window_size])
        #       feature_matrix[i,3] = new_p
        p2 = detect_peaks.detect_peaks(fseq[i * moving_size:i * moving_size +
                                            window_size],
                                       mph=3,
                                       mpd=120)
        feature_matrix[i, 2] = len(p2)
        feature_matrix[i, 3] = max(fseq[i * moving_size:i * moving_size +
                                        window_size])
        feature_matrix[i, 4] = min(fseq[i * moving_size:i * moving_size +
                                        window_size])
        a = 0
        b = 0
        for j in range(i * moving_size, i * moving_size + window_size):
            a += fseq[j]**2
        for j in range(len(p2)):
            b += fseq[p2[j]]**2
        feature_matrix[i, 5] = b / a * 100

    return feature_matrix
Exemple #4
0
def peaks(histarray, mph=None, mpd=1, threshold=0, edge='rising', kpsh=False, show=False): # put standard settings here and at the end make those variables settings to choose
	"""
	https://github.com/MonsieurV/py-findpeaks <-- many different methodologies to check out
	---------------
	* ScyPy find_peaks_cwt does weird stuff, but generally works
	* findpeaks lightweight and fast, limited settings, show not integrated
	""" 
	# square histarray to remove outliers (bogus detections)?

	# this needs to be adaptle according to the input data, above this height (95% of the data values) peaks are found
	# maybe loop until number of walls are found? <-- if number known before
	lim = np.percentile(histarray,95) # <-- parameter

	# this only gives all maxima, no settings possible
	# maxima = argrelextrema(temp[0], np.greater)[0]

	# findpeaks --> "Janko Slavic, https://github.com/jankoslavic/py-tools/tree/master/findpeaks"
	# ind = findpeaks(histarray, spacing=5, limit=5000)

	# detect_peaks --> "Marcos Duarte, https://github.com/demotu/BMC"
	"""
	possible settings:
	mph : {None, number}, optional (default = None)
        detect peaks that are greater than minimum peak height.
    mpd : positive integer, optional (default = 1)
        detect peaks that are at least separated by minimum peak distance (in
        number of data).
    threshold : positive number, optional (default = 0)
        detect peaks (valleys) that are greater (smaller) than `threshold`
        in relation to their immediate neighbors.
    edge : {None, 'rising', 'falling', 'both'}, optional (default = 'rising')
        for a flat peak, keep only the rising edge ('rising'), only the
        falling edge ('falling'), both edges ('both'), or don't detect a
        flat peak (None).
    kpsh : bool, optional (default = False)
        keep peaks with same height even if they are closer than `mpd`.
	"""

	# add 0 on both sides of histarray to prevent edge peaks not getting detected
	histarray = np.hstack((0, histarray))
	histarray = np.append([histarray],[0])

	indtemp = detect_peaks(histarray, mph=lim, mpd=3, threshold=0, edge='rising') # <-- parameter

	# move everything 1 to the left again because of 0 added at the beginning to detect edge peaks
	temp = []
	for each in indtemp:
		temp.append(each - 1)
	ind = np.array(temp)

	return ind, lim
Exemple #5
0
def sliding_window(fseq, window_size=3000, moving_size=200):
    WinNum = int((len(fseq) - window_size) / moving_size + 1)
    feature_matrix = np.zeros((WinNum, 9))

    for i in range(int((len(fseq) - window_size) / moving_size + 1)):
        #        yield fseq[i*moving_size:i*moving_size+window_size]
        feature_matrix[i, 0] = np.mean(fseq[i * moving_size:i * moving_size +
                                            window_size])  # mean
        fseq[i * moving_size:i * moving_size + window_size] = np.subtract(
            fseq[i * moving_size:i * moving_size + window_size],
            feature_matrix[i, 0])
        feature_matrix[i, 1] = np.var(fseq[i * moving_size:i * moving_size +
                                           window_size])  # var
        feature_matrix[i, 2] = np.mean(
            np.abs(
                np.subtract(
                    fseq[i * moving_size:i * moving_size + window_size - 1],
                    fseq[i * moving_size + 1:i * moving_size +
                         window_size])))  # v
        #       p1 = peakdetect.peakdet(fseq[i*moving_size:i*moving_size+window_size], 30)
        #       feature_matrix[i,2] = math.floor((len(p1[0])+len(p1[1]))/2)
        #       new_p = get_br(0,window_size,1,fseq[i*moving_size:i*moving_size+window_size])
        #       feature_matrix[i,3] = new_p
        p2 = detect_peaks.detect_peaks(fseq[i * moving_size:i * moving_size +
                                            window_size],
                                       mph=3,
                                       mpd=120)
        feature_matrix[i, 3] = len(p2)  # peak number (cycle)
        feature_matrix[i, 4] = max(fseq[i * moving_size:i * moving_size +
                                        window_size])  # max amplitude
        feature_matrix[i, 5] = min(fseq[i * moving_size:i * moving_size +
                                        window_size])  # min amplitude
        feature_matrix[i,
                       6] = np.mean(np.abs(
                           (p2[1:len(p2)] -
                            p2[0:len(p2) - 1])))  # average of peak distance
        feature_matrix[i,
                       7] = np.std(np.abs(
                           (p2[1:len(p2)] - p2[0:len(p2) - 1]
                            ))) / feature_matrix[i, 6]  # CV of peak distance
        a = 0
        b = 0
        for j in range(i * moving_size, i * moving_size + window_size):
            a += fseq[j]**2
        for j in range(len(p2)):
            b += fseq[p2[j]]**2
        feature_matrix[i, 8] = b / a * 100

    return feature_matrix
Exemple #6
0
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import numpy as np
from vector import vector, plot_peaks
from libs import detect_peaks

print('Detect peaks without any filters.')
indexes = detect_peaks.detect_peaks(vector)
print('Peaks are: %s' % (indexes))
plot_peaks(np.array(vector), indexes,
    algorithm='detect_peaks from Marcos Duarte')

print('Detect peaks with minimum height and distance filters.')
indexes = detect_peaks.detect_peaks(vector, mph=7, mpd=2)
print('Peaks are: %s' % (indexes))
plot_peaks(np.array(vector), indexes, mph=7, mpd=2,
    algorithm='detect_peaks from Marcos Duarte')
Exemple #7
0
def extract_PPG_fea(PPGdata, fs=128):

    PPGdata = signal.medfilt(PPGdata, 3)
    b, a = signal.butter(2, [0.5 * 2 / fs, 50 * 2 / fs], 'bandpass')
    dataWindow = signal.filtfilt(b, a, PPGdata)

    # Find the segment peaks' indices for peak occurrence variance feature.
    indices = detect_peaks.detect_peaks(dataWindow,
                                        mph=None,
                                        mpd=50,
                                        edge='rising',
                                        show=False)
    IBI = np.array([])  # 两个峰值之之差的时间间隔
    for i in range(len(indices) - 1):
        IBI = np.append(IBI, (indices[i + 1] - indices[i]) / fs)

    # IBI feas 7
    mean_IBI = np.mean(IBI)
    rms_IBI = np.sqrt(np.mean(np.square(IBI)))
    std_IBI = np.std(IBI)
    skew_IBI = skew(IBI)
    kurt_IBI = kurtosis(IBI)
    per_above_IBI = float(IBI[IBI > mean_IBI + std_IBI].size) / float(IBI.size)
    per_below_IBI = float(IBI[IBI < mean_IBI - std_IBI].size) / float(IBI.size)
    IBI_feas = [
        mean_IBI, rms_IBI, std_IBI, skew_IBI, kurt_IBI, per_above_IBI,
        per_below_IBI
    ]

    # HR feas 7
    heart_rate = np.array([])
    for i in range(len(IBI)):
        append_value = (PPGdata.size / fs) / IBI[i] if IBI[i] != 0 else 0
        heart_rate = np.append(heart_rate, append_value)

    mean_heart_rate = np.mean(heart_rate)
    std_heart_rate = np.std(heart_rate)
    skew_heart_rate = skew(heart_rate)
    kurt_heart_rate = kurtosis(heart_rate)
    per_above_heart_rate = float(heart_rate[heart_rate > mean_heart_rate +
                                            std_heart_rate].size) / float(
                                                heart_rate.size)
    per_below_heart_rate = float(heart_rate[heart_rate < mean_heart_rate -
                                            std_heart_rate].size) / float(
                                                heart_rate.size)
    # HRV
    peakVariance = np.finfo(np.float64).max
    if len(indices) > 1:
        peakVariance = np.var(np.diff(indices))
    HR_feas = [
        mean_heart_rate, std_heart_rate, skew_heart_rate, kurt_heart_rate,
        per_above_heart_rate, per_below_heart_rate, peakVariance
    ]

    # power_0-0.6
    freqs, power = getfreqs_power(dataWindow,
                                  fs,
                                  nperseg=dataWindow.size,
                                  scaling='spectrum')
    power_0_6 = []
    for i in range(1, 40):
        power_0_6.append(
            getBand_Power(freqs,
                          power,
                          lower=0 + (i * 0.1),
                          upper=0.1 + (i * 0.1)))
    Power_0_6_fea = power_0_6

    # MSE fea
    MSE = multiScaleEntropy(indices,
                            np.arange(1, 5),
                            r=0.2 * np.std(indices),
                            m=2)

    features = IBI_feas + HR_feas + MSE + power_0_6

    return features