def get_wavelength_solutions(affine_tr_matrix, zdata, new_orders): """ new_orders : output orders """ from libs.ecfit import get_ordered_line_data, fit_2dspec, check_fit affine_tr = matplotlib.transforms.Affine2D() affine_tr.set_matrix(affine_tr_matrix) d_x_wvl = {} for order, z in zdata.items(): xy_T = affine_tr.transform(np.array([z.x, z.y]).T) x_T = xy_T[:,0] d_x_wvl[order]=(x_T, z.wvl) xl, yl, zl = get_ordered_line_data(d_x_wvl) # xl : pixel # yl : order # zl : wvl * order x_domain = [0, 2047] orders_band = sorted(zdata.keys()) #orders = igrins_orders[band] #y_domain = [orders_band[0]-2, orders_band[-1]+2] y_domain = [new_orders[0], new_orders[-1]] p, m = fit_2dspec(xl, yl, zl, x_degree=4, y_degree=3, x_domain=x_domain, y_domain=y_domain) if 0: import matplotlib.pyplot as plt fig = plt.figure(figsize=(12, 7)) check_fit(fig, xl, yl, zl, p, orders_band, d_x_wvl) fig.tight_layout() xx = np.arange(2048) wvl_sol = [] for o in new_orders: oo = np.empty_like(xx) oo.fill(o) wvl = p(xx, oo) / o wvl_sol.append(list(wvl)) if 0: json.dump(wvl_sol, open("wvl_sol_phase0_%s_%s.json" % \ (band, igrins_log.date), "w")) return wvl_sol
def save_qa(helper, band, obsids, orders_w_solutions, reidentified_lines_map, p, m): # filter out the line indices not well fit by the surface keys = reidentified_lines_map.keys() di_list = [len(reidentified_lines_map[k_][0]) for k_ in keys] endi_list = np.add.accumulate(di_list) filter_mask = [m[endi-di:endi] for di, endi in zip(di_list, endi_list)] #from itertools import compress # _ = [list(compress(indices, mm)) for indices, mm \ # in zip(line_indices_list, filter_mask)] # line_indices_list_filtered = _ reidentified_lines_ = [reidentified_lines_map[k_] for k_ in keys] _ = [(v_[0][mm], v_[1][mm]) for v_, mm \ in zip(reidentified_lines_, filter_mask)] reidentified_lines_map_filtered = dict(zip(orders_w_solutions, _)) if 1: from matplotlib.figure import Figure from libs.ecfit import get_ordered_line_data, check_fit xl, yl, zl = get_ordered_line_data(reidentified_lines_map) fig1 = Figure(figsize=(12, 7)) check_fit(fig1, xl, yl, zl, p, orders_w_solutions, reidentified_lines_map) fig1.tight_layout() fig2 = Figure(figsize=(12, 7)) check_fit(fig2, xl[m], yl[m], zl[m], p, orders_w_solutions, reidentified_lines_map_filtered) fig2.tight_layout() from libs.qa_helper import figlist_to_pngs igr_path = helper.igr_path sky_basename = helper.get_basename(band, obsids[0]) sky_figs = igr_path.get_section_filename_base("QA_PATH", "oh_fit2d", "oh_fit2d_"+sky_basename) figlist_to_pngs(sky_figs, [fig1, fig2])
def process_wvlsol_band(utdate, refdate, band, obsids, config): from libs.products import ProductDB, PipelineStorage igr_path = IGRINSPath(config, utdate) igr_storage = PipelineStorage(igr_path) sky_filenames = igr_path.get_filenames(band, obsids) sky_basename = os.path.splitext(os.path.basename(sky_filenames[0]))[0] master_obsid = obsids[0] flaton_db_name = igr_path.get_section_filename_base("PRIMARY_CALIB_PATH", "flat_on.db", ) flaton_db = ProductDB(flaton_db_name) #flaton_basename = flaton_db.query(band, master_obsid) thar_db_name = igr_path.get_section_filename_base("PRIMARY_CALIB_PATH", "thar.db", ) thar_db = ProductDB(thar_db_name) #thar_basename = thar_db.query(band, master_obsid) # flaton_db = ProductDB(os.path.join(igr_path.secondary_calib_path, # "flat_on.db")) # thar_db = ProductDB(os.path.join(igr_path.secondary_calib_path, # "thar.db")) ap = load_aperture(igr_storage, band, master_obsid, flaton_db, thar_db) if 1: # from libs.process_thar import get_1d_median_specs raw_spec_product = get_1d_median_specs(sky_filenames, ap) # sky_master_fn_ = os.path.splitext(os.path.basename(sky_names[0]))[0] # sky_master_fn = igr_path.get_secondary_calib_filename(sky_master_fn_) import astropy.io.fits as pyfits masterhdu = pyfits.open(sky_filenames[0])[0] igr_storage.store(raw_spec_product, mastername=sky_filenames[0], masterhdu=masterhdu) # fn = sky_path.get_secondary_path("raw_spec") # raw_spec_product.save(fn, # masterhdu=masterhdu) from libs.master_calib import load_sky_ref_data # ref_date = "20140316" refdate = config.get_value("REFDATE", utdate) sky_ref_data = load_sky_ref_data(refdate, band) if 1: # initial wavelength solution # this need to be fixed # thar_db.query(sky_master_obsid) # json_name_ = "SDC%s_%s_0003.median_spectra.wvlsol" % (band, # igrins_log.date) from libs.storage_descriptions import THAR_WVLSOL_JSON_DESC thar_basename = thar_db.query(band, master_obsid) thar_wvl_sol = igr_storage.load([THAR_WVLSOL_JSON_DESC], thar_basename)[THAR_WVLSOL_JSON_DESC] #print thar_wvl_sol.keys() #["wvl_sol"] #json_name = thar_path.get_secondary_path("wvlsol_v0") #json_name = igr_path.get_secondary_calib_filename(json_name_) #thar_wvl_sol = PipelineProducts.load(json_name) if 1: # Now we fit with gaussian profile for matched positions. ohline_indices = sky_ref_data["ohline_indices"] ohlines_db = sky_ref_data["ohlines_db"] wvl_solutions = thar_wvl_sol["wvl_sol"] if 0: # it would be better to iteratively refit the solution fn = sky_path.get_secondary_path("wvlsol_v1") p = PipelineProducts.load(fn) wvl_solutionv = p["wvl_sol"] orders_w_solutions_ = thar_wvl_sol["orders"] from libs.storage_descriptions import ONED_SPEC_JSON_DESC orders_w_solutions = [o for o in orders_w_solutions_ if o in raw_spec_product[ONED_SPEC_JSON_DESC]["orders"]] _ = dict(zip(raw_spec_product[ONED_SPEC_JSON_DESC]["orders"], raw_spec_product[ONED_SPEC_JSON_DESC]["specs"])) s_list = [_[o]for o in orders_w_solutions] from libs.reidentify_ohlines import fit_ohlines ref_pixel_list, reidentified_lines = \ fit_ohlines(ohlines_db, ohline_indices, orders_w_solutions, wvl_solutions, s_list) # from scipy.interpolate import interp1d # from reidentify import reidentify_lines_all x = np.arange(2048) # line_indices_list = [ref_ohline_indices[str(o)] for o in igrins_orders[band]] ###### not fit identified lines from libs.ecfit import get_ordered_line_data, fit_2dspec, check_fit # d_x_wvl = {} # for order, z in echel.zdata.items(): # xy_T = affine_tr.transform(np.array([z.x, z.y]).T) # x_T = xy_T[:,0] # d_x_wvl[order]=(x_T, z.wvl) reidentified_lines_map = dict(zip(orders_w_solutions, reidentified_lines)) if band == "K": import libs.master_calib as master_calib fn = "hitran_bootstrap_K_%s.json" % refdate bootstrap_name = master_calib.get_master_calib_abspath(fn) import json bootstrap = json.load(open(bootstrap_name)) import libs.hitran as hitran r, ref_pixel_list = hitran.reidentify(wvl_solutions, s_list, bootstrap) # json_name = "hitran_reidentified_K_%s.json" % igrins_log.date # r = json.load(open(json_name)) for i, s in r.items(): ss = reidentified_lines_map[int(i)] ss0 = np.concatenate([ss[0], s["pixel"]]) ss1 = np.concatenate([ss[1], s["wavelength"]]) reidentified_lines_map[int(i)] = (ss0, ss1) xl, yl, zl = get_ordered_line_data(reidentified_lines_map) # xl : pixel # yl : order # zl : wvl * order x_domain = [0, 2047] y_domain = [orders_w_solutions[0]-2, orders_w_solutions[-1]+2] x_degree, y_degree = 4, 3 #x_degree, y_degree = 3, 2 p, m = fit_2dspec(xl, yl, zl, x_degree=x_degree, y_degree=y_degree, x_domain=x_domain, y_domain=y_domain) # derive wavelengths. xx = np.arange(2048) wvl_sol = [] for o in orders_w_solutions: oo = np.empty_like(xx) oo.fill(o) wvl = p(xx, oo) / o wvl_sol.append(list(wvl)) oh_sol_products = PipelineProducts("Wavelength solution based on ohlines") #from libs.process_thar import ONED_SPEC_JSON from libs.products import PipelineDict from libs.storage_descriptions import SKY_WVLSOL_JSON_DESC oh_sol_products.add(SKY_WVLSOL_JSON_DESC, PipelineDict(orders=orders_w_solutions, wvl_sol=wvl_sol)) if 1: if 1: # save as WAT fits header xx = np.arange(0, 2048) xx_plus1 = np.arange(1, 2048+1) from astropy.modeling import models, fitting # We convert 2d chebyshev solution to a seriese of 1d # chebyshev. For now, use naive (and inefficient) # approach of refitting the solution with 1d. Should be # reimplemented. p1d_list = [] for o in orders_w_solutions: oo = np.empty_like(xx) oo.fill(o) wvl = p(xx, oo) / o * 1.e4 # um to angstrom p_init1d = models.Chebyshev1D(domain=[1, 2048], degree=p.x_degree) fit_p1d = fitting.LinearLSQFitter() p1d = fit_p1d(p_init1d, xx_plus1, wvl) p1d_list.append(p1d) from libs.iraf_helper import get_wat_spec, default_header_str wat_list = get_wat_spec(orders_w_solutions, p1d_list) # cards = [pyfits.Card.fromstring(l.strip()) \ # for l in open("echell_2dspec.header")] cards = [pyfits.Card.fromstring(l.strip()) \ for l in default_header_str] wat = "wtype=multispec " + " ".join(wat_list) char_per_line = 68 num_line, remainder = divmod(len(wat), char_per_line) for i in range(num_line): k = "WAT2_%03d" % (i+1,) v = wat[char_per_line*i:char_per_line*(i+1)] #print k, v c = pyfits.Card(k, v) cards.append(c) if remainder > 0: i = num_line k = "WAT2_%03d" % (i+1,) v = wat[char_per_line*i:] #print k, v c = pyfits.Card(k, v) cards.append(c) if 1: # save fits with empty header header = pyfits.Header(cards) hdu = pyfits.PrimaryHDU(header=header, data=np.array([]).reshape((0,0))) from libs.storage_descriptions import SKY_WVLSOL_FITS_DESC from libs.products import PipelineImage oh_sol_products.add(SKY_WVLSOL_FITS_DESC, PipelineImage([], np.array([]).reshape((0,0)))) igr_storage.store(oh_sol_products, mastername=sky_filenames[0], masterhdu=hdu) #fn = sky_path.get_secondary_path("wvlsol_v1.fits") #hdu.writeto(fn, clobber=True) if 0: # plot all spectra for w, s in zip(wvl_sol, s_list): plot(w, s) if 1: # filter out the line indices not well fit by the surface keys = reidentified_lines_map.keys() di_list = [len(reidentified_lines_map[k_][0]) for k_ in keys] endi_list = np.add.accumulate(di_list) filter_mask = [m[endi-di:endi] for di, endi in zip(di_list, endi_list)] #from itertools import compress # _ = [list(compress(indices, mm)) for indices, mm \ # in zip(line_indices_list, filter_mask)] # line_indices_list_filtered = _ reidentified_lines_ = [reidentified_lines_map[k_] for k_ in keys] _ = [(v_[0][mm], v_[1][mm]) for v_, mm \ in zip(reidentified_lines_, filter_mask)] reidentified_lines_map_filtered = dict(zip(orders_w_solutions, _)) if 1: from matplotlib.figure import Figure fig1 = Figure(figsize=(12, 7)) check_fit(fig1, xl, yl, zl, p, orders_w_solutions, reidentified_lines_map) fig1.tight_layout() fig2 = Figure(figsize=(12, 7)) check_fit(fig2, xl[m], yl[m], zl[m], p, orders_w_solutions, reidentified_lines_map_filtered) fig2.tight_layout() if 1: from libs.qa_helper import figlist_to_pngs sky_figs = igr_path.get_section_filename_base("QA_PATH", "oh_fit2d", "oh_fit2d_"+sky_basename) figlist_to_pngs(sky_figs, [fig1, fig2]) if 1: from libs.products import ProductDB sky_db_name = igr_path.get_section_filename_base("PRIMARY_CALIB_PATH", "sky.db", ) sky_db = ProductDB(sky_db_name) sky_db.update(band, sky_basename)
def process_wvlsol_band(utdate, refdate, band, obsids, config): from libs.products import ProductDB, PipelineStorage igr_path = IGRINSPath(config, utdate) igr_storage = PipelineStorage(igr_path) sky_filenames = igr_path.get_filenames(band, obsids) sky_basename = os.path.splitext(os.path.basename(sky_filenames[0]))[0] master_obsid = obsids[0] flaton_db_name = igr_path.get_section_filename_base( "PRIMARY_CALIB_PATH", "flat_on.db", ) flaton_db = ProductDB(flaton_db_name) #flaton_basename = flaton_db.query(band, master_obsid) thar_db_name = igr_path.get_section_filename_base( "PRIMARY_CALIB_PATH", "thar.db", ) thar_db = ProductDB(thar_db_name) #thar_basename = thar_db.query(band, master_obsid) # flaton_db = ProductDB(os.path.join(igr_path.secondary_calib_path, # "flat_on.db")) # thar_db = ProductDB(os.path.join(igr_path.secondary_calib_path, # "thar.db")) ap = load_aperture(igr_storage, band, master_obsid, flaton_db, thar_db) if 1: # from libs.process_thar import get_1d_median_specs raw_spec_product = get_1d_median_specs(sky_filenames, ap) # sky_master_fn_ = os.path.splitext(os.path.basename(sky_names[0]))[0] # sky_master_fn = igr_path.get_secondary_calib_filename(sky_master_fn_) import astropy.io.fits as pyfits masterhdu = pyfits.open(sky_filenames[0])[0] igr_storage.store(raw_spec_product, mastername=sky_filenames[0], masterhdu=masterhdu) # fn = sky_path.get_secondary_path("raw_spec") # raw_spec_product.save(fn, # masterhdu=masterhdu) from libs.master_calib import load_sky_ref_data # ref_date = "20140316" refdate = config.get_value("REFDATE", utdate) sky_ref_data = load_sky_ref_data(refdate, band) if 1: # initial wavelength solution # this need to be fixed # thar_db.query(sky_master_obsid) # json_name_ = "SDC%s_%s_0003.median_spectra.wvlsol" % (band, # igrins_log.date) from libs.storage_descriptions import THAR_WVLSOL_JSON_DESC thar_basename = thar_db.query(band, master_obsid) thar_wvl_sol = igr_storage.load([THAR_WVLSOL_JSON_DESC], thar_basename)[THAR_WVLSOL_JSON_DESC] #print thar_wvl_sol.keys() #["wvl_sol"] #json_name = thar_path.get_secondary_path("wvlsol_v0") #json_name = igr_path.get_secondary_calib_filename(json_name_) #thar_wvl_sol = PipelineProducts.load(json_name) if 1: # Now we fit with gaussian profile for matched positions. ohline_indices = sky_ref_data["ohline_indices"] ohlines_db = sky_ref_data["ohlines_db"] wvl_solutions = thar_wvl_sol["wvl_sol"] if 0: # it would be better to iteratively refit the solution fn = sky_path.get_secondary_path("wvlsol_v1") p = PipelineProducts.load(fn) wvl_solutionv = p["wvl_sol"] orders_w_solutions_ = thar_wvl_sol["orders"] from libs.storage_descriptions import ONED_SPEC_JSON_DESC orders_w_solutions = [ o for o in orders_w_solutions_ if o in raw_spec_product[ONED_SPEC_JSON_DESC]["orders"] ] _ = dict( zip(raw_spec_product[ONED_SPEC_JSON_DESC]["orders"], raw_spec_product[ONED_SPEC_JSON_DESC]["specs"])) s_list = [_[o] for o in orders_w_solutions] from libs.reidentify_ohlines import fit_ohlines ref_pixel_list, reidentified_lines = \ fit_ohlines(ohlines_db, ohline_indices, orders_w_solutions, wvl_solutions, s_list) # from scipy.interpolate import interp1d # from reidentify import reidentify_lines_all x = np.arange(2048) # line_indices_list = [ref_ohline_indices[str(o)] for o in igrins_orders[band]] ###### not fit identified lines from libs.ecfit import get_ordered_line_data, fit_2dspec, check_fit # d_x_wvl = {} # for order, z in echel.zdata.items(): # xy_T = affine_tr.transform(np.array([z.x, z.y]).T) # x_T = xy_T[:,0] # d_x_wvl[order]=(x_T, z.wvl) reidentified_lines_map = dict( zip(orders_w_solutions, reidentified_lines)) if band == "K": import libs.master_calib as master_calib fn = "hitran_bootstrap_K_%s.json" % refdate bootstrap_name = master_calib.get_master_calib_abspath(fn) import json bootstrap = json.load(open(bootstrap_name)) import libs.hitran as hitran r, ref_pixel_list = hitran.reidentify(wvl_solutions, s_list, bootstrap) # json_name = "hitran_reidentified_K_%s.json" % igrins_log.date # r = json.load(open(json_name)) for i, s in r.items(): ss = reidentified_lines_map[int(i)] ss0 = np.concatenate([ss[0], s["pixel"]]) ss1 = np.concatenate([ss[1], s["wavelength"]]) reidentified_lines_map[int(i)] = (ss0, ss1) xl, yl, zl = get_ordered_line_data(reidentified_lines_map) # xl : pixel # yl : order # zl : wvl * order x_domain = [0, 2047] y_domain = [orders_w_solutions[0] - 2, orders_w_solutions[-1] + 2] x_degree, y_degree = 4, 3 #x_degree, y_degree = 3, 2 p, m = fit_2dspec(xl, yl, zl, x_degree=x_degree, y_degree=y_degree, x_domain=x_domain, y_domain=y_domain) # derive wavelengths. xx = np.arange(2048) wvl_sol = [] for o in orders_w_solutions: oo = np.empty_like(xx) oo.fill(o) wvl = p(xx, oo) / o wvl_sol.append(list(wvl)) oh_sol_products = PipelineProducts( "Wavelength solution based on ohlines") #from libs.process_thar import ONED_SPEC_JSON from libs.products import PipelineDict from libs.storage_descriptions import SKY_WVLSOL_JSON_DESC oh_sol_products.add( SKY_WVLSOL_JSON_DESC, PipelineDict(orders=orders_w_solutions, wvl_sol=wvl_sol)) if 1: if 1: # save as WAT fits header xx = np.arange(0, 2048) xx_plus1 = np.arange(1, 2048 + 1) from astropy.modeling import models, fitting # We convert 2d chebyshev solution to a seriese of 1d # chebyshev. For now, use naive (and inefficient) # approach of refitting the solution with 1d. Should be # reimplemented. p1d_list = [] for o in orders_w_solutions: oo = np.empty_like(xx) oo.fill(o) wvl = p(xx, oo) / o * 1.e4 # um to angstrom p_init1d = models.Chebyshev1D(domain=[1, 2048], degree=p.x_degree) fit_p1d = fitting.LinearLSQFitter() p1d = fit_p1d(p_init1d, xx_plus1, wvl) p1d_list.append(p1d) from libs.iraf_helper import get_wat_spec, default_header_str wat_list = get_wat_spec(orders_w_solutions, p1d_list) # cards = [pyfits.Card.fromstring(l.strip()) \ # for l in open("echell_2dspec.header")] cards = [pyfits.Card.fromstring(l.strip()) \ for l in default_header_str] wat = "wtype=multispec " + " ".join(wat_list) char_per_line = 68 num_line, remainder = divmod(len(wat), char_per_line) for i in range(num_line): k = "WAT2_%03d" % (i + 1, ) v = wat[char_per_line * i:char_per_line * (i + 1)] #print k, v c = pyfits.Card(k, v) cards.append(c) if remainder > 0: i = num_line k = "WAT2_%03d" % (i + 1, ) v = wat[char_per_line * i:] #print k, v c = pyfits.Card(k, v) cards.append(c) if 1: # save fits with empty header header = pyfits.Header(cards) hdu = pyfits.PrimaryHDU(header=header, data=np.array([]).reshape((0, 0))) from libs.storage_descriptions import SKY_WVLSOL_FITS_DESC from libs.products import PipelineImage oh_sol_products.add(SKY_WVLSOL_FITS_DESC, PipelineImage([], np.array(wvl_sol))) igr_storage.store(oh_sol_products, mastername=sky_filenames[0], masterhdu=hdu) #fn = sky_path.get_secondary_path("wvlsol_v1.fits") #hdu.writeto(fn, clobber=True) if 0: # plot all spectra for w, s in zip(wvl_sol, s_list): plot(w, s) if 1: # filter out the line indices not well fit by the surface keys = reidentified_lines_map.keys() di_list = [len(reidentified_lines_map[k_][0]) for k_ in keys] endi_list = np.add.accumulate(di_list) filter_mask = [ m[endi - di:endi] for di, endi in zip(di_list, endi_list) ] #from itertools import compress # _ = [list(compress(indices, mm)) for indices, mm \ # in zip(line_indices_list, filter_mask)] # line_indices_list_filtered = _ reidentified_lines_ = [reidentified_lines_map[k_] for k_ in keys] _ = [(v_[0][mm], v_[1][mm]) for v_, mm \ in zip(reidentified_lines_, filter_mask)] reidentified_lines_map_filtered = dict(zip(orders_w_solutions, _)) if 1: from matplotlib.figure import Figure fig1 = Figure(figsize=(12, 7)) check_fit(fig1, xl, yl, zl, p, orders_w_solutions, reidentified_lines_map) fig1.tight_layout() fig2 = Figure(figsize=(12, 7)) check_fit(fig2, xl[m], yl[m], zl[m], p, orders_w_solutions, reidentified_lines_map_filtered) fig2.tight_layout() if 1: from libs.qa_helper import figlist_to_pngs sky_figs = igr_path.get_section_filename_base( "QA_PATH", "oh_fit2d", "oh_fit2d_" + sky_basename) figlist_to_pngs(sky_figs, [fig1, fig2]) if 1: from libs.products import ProductDB sky_db_name = igr_path.get_section_filename_base( "PRIMARY_CALIB_PATH", "sky.db", ) sky_db = ProductDB(sky_db_name) sky_db.update(band, sky_basename)