def get_refdata(self, band): from libs.master_calib import load_sky_ref_data if band not in self._refdata: sky_refdata = load_sky_ref_data(self.refdate, band) self._refdata[band] = sky_refdata return self._refdata[band]
def load_oh_reference_data(self, band): from libs.master_calib import load_sky_ref_data #ref_utdate = self.config.get_value("REFDATE", self.utdate) refdate = self.refdate sky_ref_data = load_sky_ref_data(refdate, band) ohlines_db = sky_ref_data["ohlines_db"] ref_ohline_indices = sky_ref_data["ohline_indices"] return ohlines_db, ref_ohline_indices
def process_wvlsol_band(utdate, refdate, band, obsids, config): from libs.products import ProductDB, PipelineStorage igr_path = IGRINSPath(config, utdate) igr_storage = PipelineStorage(igr_path) sky_filenames = igr_path.get_filenames(band, obsids) sky_basename = os.path.splitext(os.path.basename(sky_filenames[0]))[0] master_obsid = obsids[0] flaton_db_name = igr_path.get_section_filename_base("PRIMARY_CALIB_PATH", "flat_on.db", ) flaton_db = ProductDB(flaton_db_name) #flaton_basename = flaton_db.query(band, master_obsid) thar_db_name = igr_path.get_section_filename_base("PRIMARY_CALIB_PATH", "thar.db", ) thar_db = ProductDB(thar_db_name) #thar_basename = thar_db.query(band, master_obsid) # flaton_db = ProductDB(os.path.join(igr_path.secondary_calib_path, # "flat_on.db")) # thar_db = ProductDB(os.path.join(igr_path.secondary_calib_path, # "thar.db")) ap = load_aperture(igr_storage, band, master_obsid, flaton_db, thar_db) if 1: # from libs.process_thar import get_1d_median_specs raw_spec_product = get_1d_median_specs(sky_filenames, ap) # sky_master_fn_ = os.path.splitext(os.path.basename(sky_names[0]))[0] # sky_master_fn = igr_path.get_secondary_calib_filename(sky_master_fn_) import astropy.io.fits as pyfits masterhdu = pyfits.open(sky_filenames[0])[0] igr_storage.store(raw_spec_product, mastername=sky_filenames[0], masterhdu=masterhdu) # fn = sky_path.get_secondary_path("raw_spec") # raw_spec_product.save(fn, # masterhdu=masterhdu) from libs.master_calib import load_sky_ref_data # ref_date = "20140316" refdate = config.get_value("REFDATE", utdate) sky_ref_data = load_sky_ref_data(refdate, band) if 1: # initial wavelength solution # this need to be fixed # thar_db.query(sky_master_obsid) # json_name_ = "SDC%s_%s_0003.median_spectra.wvlsol" % (band, # igrins_log.date) from libs.storage_descriptions import THAR_WVLSOL_JSON_DESC thar_basename = thar_db.query(band, master_obsid) thar_wvl_sol = igr_storage.load([THAR_WVLSOL_JSON_DESC], thar_basename)[THAR_WVLSOL_JSON_DESC] #print thar_wvl_sol.keys() #["wvl_sol"] #json_name = thar_path.get_secondary_path("wvlsol_v0") #json_name = igr_path.get_secondary_calib_filename(json_name_) #thar_wvl_sol = PipelineProducts.load(json_name) if 1: # Now we fit with gaussian profile for matched positions. ohline_indices = sky_ref_data["ohline_indices"] ohlines_db = sky_ref_data["ohlines_db"] wvl_solutions = thar_wvl_sol["wvl_sol"] if 0: # it would be better to iteratively refit the solution fn = sky_path.get_secondary_path("wvlsol_v1") p = PipelineProducts.load(fn) wvl_solutionv = p["wvl_sol"] orders_w_solutions_ = thar_wvl_sol["orders"] from libs.storage_descriptions import ONED_SPEC_JSON_DESC orders_w_solutions = [o for o in orders_w_solutions_ if o in raw_spec_product[ONED_SPEC_JSON_DESC]["orders"]] _ = dict(zip(raw_spec_product[ONED_SPEC_JSON_DESC]["orders"], raw_spec_product[ONED_SPEC_JSON_DESC]["specs"])) s_list = [_[o]for o in orders_w_solutions] from libs.reidentify_ohlines import fit_ohlines ref_pixel_list, reidentified_lines = \ fit_ohlines(ohlines_db, ohline_indices, orders_w_solutions, wvl_solutions, s_list) # from scipy.interpolate import interp1d # from reidentify import reidentify_lines_all x = np.arange(2048) # line_indices_list = [ref_ohline_indices[str(o)] for o in igrins_orders[band]] ###### not fit identified lines from libs.ecfit import get_ordered_line_data, fit_2dspec, check_fit # d_x_wvl = {} # for order, z in echel.zdata.items(): # xy_T = affine_tr.transform(np.array([z.x, z.y]).T) # x_T = xy_T[:,0] # d_x_wvl[order]=(x_T, z.wvl) reidentified_lines_map = dict(zip(orders_w_solutions, reidentified_lines)) if band == "K": import libs.master_calib as master_calib fn = "hitran_bootstrap_K_%s.json" % refdate bootstrap_name = master_calib.get_master_calib_abspath(fn) import json bootstrap = json.load(open(bootstrap_name)) import libs.hitran as hitran r, ref_pixel_list = hitran.reidentify(wvl_solutions, s_list, bootstrap) # json_name = "hitran_reidentified_K_%s.json" % igrins_log.date # r = json.load(open(json_name)) for i, s in r.items(): ss = reidentified_lines_map[int(i)] ss0 = np.concatenate([ss[0], s["pixel"]]) ss1 = np.concatenate([ss[1], s["wavelength"]]) reidentified_lines_map[int(i)] = (ss0, ss1) xl, yl, zl = get_ordered_line_data(reidentified_lines_map) # xl : pixel # yl : order # zl : wvl * order x_domain = [0, 2047] y_domain = [orders_w_solutions[0]-2, orders_w_solutions[-1]+2] x_degree, y_degree = 4, 3 #x_degree, y_degree = 3, 2 p, m = fit_2dspec(xl, yl, zl, x_degree=x_degree, y_degree=y_degree, x_domain=x_domain, y_domain=y_domain) # derive wavelengths. xx = np.arange(2048) wvl_sol = [] for o in orders_w_solutions: oo = np.empty_like(xx) oo.fill(o) wvl = p(xx, oo) / o wvl_sol.append(list(wvl)) oh_sol_products = PipelineProducts("Wavelength solution based on ohlines") #from libs.process_thar import ONED_SPEC_JSON from libs.products import PipelineDict from libs.storage_descriptions import SKY_WVLSOL_JSON_DESC oh_sol_products.add(SKY_WVLSOL_JSON_DESC, PipelineDict(orders=orders_w_solutions, wvl_sol=wvl_sol)) if 1: if 1: # save as WAT fits header xx = np.arange(0, 2048) xx_plus1 = np.arange(1, 2048+1) from astropy.modeling import models, fitting # We convert 2d chebyshev solution to a seriese of 1d # chebyshev. For now, use naive (and inefficient) # approach of refitting the solution with 1d. Should be # reimplemented. p1d_list = [] for o in orders_w_solutions: oo = np.empty_like(xx) oo.fill(o) wvl = p(xx, oo) / o * 1.e4 # um to angstrom p_init1d = models.Chebyshev1D(domain=[1, 2048], degree=p.x_degree) fit_p1d = fitting.LinearLSQFitter() p1d = fit_p1d(p_init1d, xx_plus1, wvl) p1d_list.append(p1d) from libs.iraf_helper import get_wat_spec, default_header_str wat_list = get_wat_spec(orders_w_solutions, p1d_list) # cards = [pyfits.Card.fromstring(l.strip()) \ # for l in open("echell_2dspec.header")] cards = [pyfits.Card.fromstring(l.strip()) \ for l in default_header_str] wat = "wtype=multispec " + " ".join(wat_list) char_per_line = 68 num_line, remainder = divmod(len(wat), char_per_line) for i in range(num_line): k = "WAT2_%03d" % (i+1,) v = wat[char_per_line*i:char_per_line*(i+1)] #print k, v c = pyfits.Card(k, v) cards.append(c) if remainder > 0: i = num_line k = "WAT2_%03d" % (i+1,) v = wat[char_per_line*i:] #print k, v c = pyfits.Card(k, v) cards.append(c) if 1: # save fits with empty header header = pyfits.Header(cards) hdu = pyfits.PrimaryHDU(header=header, data=np.array([]).reshape((0,0))) from libs.storage_descriptions import SKY_WVLSOL_FITS_DESC from libs.products import PipelineImage oh_sol_products.add(SKY_WVLSOL_FITS_DESC, PipelineImage([], np.array([]).reshape((0,0)))) igr_storage.store(oh_sol_products, mastername=sky_filenames[0], masterhdu=hdu) #fn = sky_path.get_secondary_path("wvlsol_v1.fits") #hdu.writeto(fn, clobber=True) if 0: # plot all spectra for w, s in zip(wvl_sol, s_list): plot(w, s) if 1: # filter out the line indices not well fit by the surface keys = reidentified_lines_map.keys() di_list = [len(reidentified_lines_map[k_][0]) for k_ in keys] endi_list = np.add.accumulate(di_list) filter_mask = [m[endi-di:endi] for di, endi in zip(di_list, endi_list)] #from itertools import compress # _ = [list(compress(indices, mm)) for indices, mm \ # in zip(line_indices_list, filter_mask)] # line_indices_list_filtered = _ reidentified_lines_ = [reidentified_lines_map[k_] for k_ in keys] _ = [(v_[0][mm], v_[1][mm]) for v_, mm \ in zip(reidentified_lines_, filter_mask)] reidentified_lines_map_filtered = dict(zip(orders_w_solutions, _)) if 1: from matplotlib.figure import Figure fig1 = Figure(figsize=(12, 7)) check_fit(fig1, xl, yl, zl, p, orders_w_solutions, reidentified_lines_map) fig1.tight_layout() fig2 = Figure(figsize=(12, 7)) check_fit(fig2, xl[m], yl[m], zl[m], p, orders_w_solutions, reidentified_lines_map_filtered) fig2.tight_layout() if 1: from libs.qa_helper import figlist_to_pngs sky_figs = igr_path.get_section_filename_base("QA_PATH", "oh_fit2d", "oh_fit2d_"+sky_basename) figlist_to_pngs(sky_figs, [fig1, fig2]) if 1: from libs.products import ProductDB sky_db_name = igr_path.get_section_filename_base("PRIMARY_CALIB_PATH", "sky.db", ) sky_db = ProductDB(sky_db_name) sky_db.update(band, sky_basename)
def process_distortion_sky_band(utdate, refdate, band, obsids, config): from libs.products import ProductDB, PipelineStorage igr_path = IGRINSPath(config, utdate) igr_storage = PipelineStorage(igr_path) sky_filenames = igr_path.get_filenames(band, obsids) sky_basename = os.path.splitext(os.path.basename(sky_filenames[0]))[0] master_obsid = obsids[0] flaton_db_name = igr_path.get_section_filename_base("PRIMARY_CALIB_PATH", "flat_on.db", ) flaton_db = ProductDB(flaton_db_name) # thar_db_name = igr_path.get_section_filename_base("PRIMARY_CALIB_PATH", # "thar.db", # ) # thar_db = ProductDB(thar_db_name) from libs.storage_descriptions import (COMBINED_IMAGE_DESC, ONED_SPEC_JSON_DESC) raw_spec_products = igr_storage.load([COMBINED_IMAGE_DESC, ONED_SPEC_JSON_DESC], sky_basename) # raw_spec_products = PipelineProducts.load(sky_path.get_secondary_path("raw_spec")) from libs.storage_descriptions import SKY_WVLSOL_JSON_DESC wvlsol_products = igr_storage.load([SKY_WVLSOL_JSON_DESC], sky_basename)[SKY_WVLSOL_JSON_DESC] orders_w_solutions = wvlsol_products["orders"] wvl_solutions = wvlsol_products["wvl_sol"] ap = load_aperture2(igr_storage, band, master_obsid, flaton_db, raw_spec_products[ONED_SPEC_JSON_DESC]["orders"], orders_w_solutions) #orders_w_solutions = ap.orders if 1: # load reference data from libs.master_calib import load_sky_ref_data ref_utdate = config.get_value("REFDATE", utdate) sky_ref_data = load_sky_ref_data(ref_utdate, band) ohlines_db = sky_ref_data["ohlines_db"] ref_ohline_indices = sky_ref_data["ohline_indices"] orders_w_solutions = wvlsol_products["orders"] wvl_solutions = wvlsol_products["wvl_sol"] if 1: n_slice_one_direction = 2 n_slice = n_slice_one_direction*2 + 1 i_center = n_slice_one_direction slit_slice = np.linspace(0., 1., n_slice+1) slice_center = (slit_slice[i_center], slit_slice[i_center+1]) slice_up = [(slit_slice[i_center+i], slit_slice[i_center+i+1]) \ for i in range(1, n_slice_one_direction+1)] slice_down = [(slit_slice[i_center-i-1], slit_slice[i_center-i]) \ for i in range(n_slice_one_direction)] d = raw_spec_products[COMBINED_IMAGE_DESC].data s_center = ap.extract_spectra_v2(d, slice_center[0], slice_center[1]) s_up, s_down = [], [] for s1, s2 in slice_up: s = ap.extract_spectra_v2(d, s1, s2) s_up.append(s) for s1, s2 in slice_down: s = ap.extract_spectra_v2(d, s1, s2) s_down.append(s) if 1: # now fit #ohline_indices = [ref_ohline_indices[o] for o in orders_w_solutions] if 0: def test_order(oi): ax=subplot(111) ax.plot(wvl_solutions[oi], s_center[oi]) #ax.plot(wvl_solutions[oi], raw_spec_products["specs"][oi]) o = orders[oi] line_indices = ref_ohline_indices[o] for li in line_indices: um = np.take(ohlines_db.um, li) intensity = np.take(ohlines_db.intensity, li) ax.vlines(um, ymin=0, ymax=-intensity) from libs.reidentify_ohlines import fit_ohlines, fit_ohlines_pixel def get_reidentified_lines_OH(orders_w_solutions, wvl_solutions, s_center): ref_pixel_list, reidentified_lines = \ fit_ohlines(ohlines_db, ref_ohline_indices, orders_w_solutions, wvl_solutions, s_center) reidentified_lines_map = dict(zip(orders_w_solutions, reidentified_lines)) return reidentified_lines_map, ref_pixel_list if band == "H": reidentified_lines_map, ref_pixel_list_oh = \ get_reidentified_lines_OH(orders_w_solutions, wvl_solutions, s_center) def refit_centroid(s_center, ref_pixel_list=ref_pixel_list_oh): centroids = fit_ohlines_pixel(s_center, ref_pixel_list) return centroids else: # band K reidentified_lines_map, ref_pixel_list_oh = \ get_reidentified_lines_OH(orders_w_solutions, wvl_solutions, s_center) import libs.master_calib as master_calib fn = "hitran_bootstrap_K_%s.json" % ref_utdate bootstrap_name = master_calib.get_master_calib_abspath(fn) import json bootstrap = json.load(open(bootstrap_name)) import libs.hitran as hitran r, ref_pixel_dict_hitrans = hitran.reidentify(wvl_solutions, s_center, bootstrap) # for i, s in r.items(): # ss = reidentified_lines_map[int(i)] # ss0 = np.concatenate([ss[0], s["pixel"]]) # ss1 = np.concatenate([ss[1], s["wavelength"]]) # reidentified_lines_map[int(i)] = (ss0, ss1) #reidentified_lines_map, ref_pixel_list def refit_centroid(s_center, ref_pixel_list=ref_pixel_list_oh, ref_pixel_dict_hitrans=ref_pixel_dict_hitrans): centroids_oh = fit_ohlines_pixel(s_center, ref_pixel_list) s_dict = dict(zip(orders_w_solutions, s_center)) centroids_dict_hitrans = hitran.fit_hitrans_pixel(s_dict, ref_pixel_dict_hitrans) centroids = [] for o, c_oh in zip(orders_w_solutions, centroids_oh): if o in centroids_dict_hitrans: c = np.concatenate([c_oh, centroids_dict_hitrans[o]["pixel"]]) centroids.append(c) else: centroids.append(c_oh) return centroids # reidentified_lines_map = get_reidentified_lines(orders_w_solutions, # wvl_solutions, # s_center) if 1: # TODO: we should not need this, instead recycle from preivious step. fitted_centroid_center = refit_centroid(s_center) # fitted_centroid_center = fit_ohlines_pixel(s_center, # ref_pixel_list) d_shift_up = [] for s in s_up: # TODO: ref_pixel_list_filtered need to be updated with recent fit. fitted_centroid = refit_centroid(s) # fitted_centroid = fit_ohlines_pixel(s, # ref_pixel_list) d_shift = [b-a for a, b in zip(fitted_centroid_center, fitted_centroid)] d_shift_up.append(d_shift) d_shift_down = [] for s in s_down: # TODO: ref_pixel_list_filtered need to be updated with recent fit. fitted_centroid = refit_centroid(s) # fitted_centroid = fit_ohlines_pixel(s, # ref_pixel_list) #fitted_centroid_center, d_shift = [b-a for a, b in zip(fitted_centroid_center, fitted_centroid)] d_shift_down.append(d_shift) if 1: # now fit orders = orders_w_solutions x_domain = [0, 2048] y_domain = [orders[0]-2, orders[-1]+2] xl = np.concatenate(fitted_centroid_center) yl_ = [o + np.zeros_like(x_) for o, x_ in zip(orders, fitted_centroid_center)] yl = np.concatenate(yl_) from libs.ecfit import fit_2dspec, check_fit_simple zl_list = [np.concatenate(d_) for d_ \ in d_shift_down[::-1] + d_shift_up] pm_list = [] for zl in zl_list: p, m = fit_2dspec(xl, yl, zl, x_degree=1, y_degree=1, x_domain=x_domain, y_domain=y_domain) pm_list.append((p,m)) zz_std_list = [] for zl, (p, m) in zip(zl_list, pm_list): z_m = p(xl[m], yl[m]) zz = z_m - zl[m] zz_std_list.append(zz.std()) fig_list = [] from matplotlib.figure import Figure for zl, (p, m) in zip(zl_list, pm_list): fig = Figure() check_fit_simple(fig, xl[m], yl[m], zl[m], p, orders) fig_list.append(fig) if 1: xi = np.linspace(0, 2048, 128+1) from astropy.modeling import fitting from astropy.modeling.polynomial import Chebyshev2D x_domain = [0, 2048] y_domain = [0., 1.] p2_list = [] for o in orders: oi = np.zeros_like(xi) + o shift_list = [] for p,m in pm_list[:n_slice_one_direction]: shift_list.append(p(xi, oi)) shift_list.append(np.zeros_like(xi)) for p,m in pm_list[n_slice_one_direction:]: shift_list.append(p(xi, oi)) p_init = Chebyshev2D(x_degree=1, y_degree=2, x_domain=x_domain, y_domain=y_domain) f = fitting.LinearLSQFitter() yi = 0.5*(slit_slice[:-1] + slit_slice[1:]) xl, yl = np.meshgrid(xi, yi) zl = np.array(shift_list) p = f(p_init, xl, yl, zl) p2_list.append(p) if 1: p2_dict = dict(zip(orders, p2_list)) order_map = ap.make_order_map() slitpos_map = ap.make_slitpos_map() slitoffset_map = np.empty_like(slitpos_map) slitoffset_map.fill(np.nan) for o in ap.orders: xi = np.arange(0, 2048) xl, yl = np.meshgrid(xi, xi) msk = order_map == o slitoffset_map[msk] = p2_dict[o](xl[msk], slitpos_map[msk]) # import astropy.io.fits as pyfits # fn = sky_path.get_secondary_path("slitoffset_map.fits") # pyfits.PrimaryHDU(data=slitoffset_map).writeto(fn, clobber=True) from libs.storage_descriptions import SLITOFFSET_FITS_DESC from libs.products import PipelineImage, PipelineProducts distortion_products = PipelineProducts("Distortion map") distortion_products.add(SLITOFFSET_FITS_DESC, PipelineImage([], slitoffset_map)) igr_storage.store(distortion_products, mastername=sky_filenames[0], masterhdu=None) from libs.qa_helper import figlist_to_pngs sky_figs = igr_path.get_section_filename_base("QA_PATH", "oh_distortion", "oh_distortion_"+sky_basename) print fig_list figlist_to_pngs(sky_figs, fig_list) if 0: # test x = np.arange(2048, dtype="d") oi = 10 o = orders[oi] yi = 0.5*(slit_slice[:-1] + slit_slice[1:]) ax1 = subplot(211) s1 = s_up[-1][oi] s2 = s_down[-1][oi] ax1.plot(x, s1) ax1.plot(x, s2) ax2 = subplot(212, sharex=ax1, sharey=ax1) dx1 = p2_dict[o](x, yi[-1]+np.zeros_like(x)) ax2.plot(x-dx1, s1) dx2 = p2_dict[o](x, yi[0]+np.zeros_like(x)) ax2.plot(x-dx2, s2)
def process_wvlsol_band(utdate, refdate, band, obsids, config): from libs.products import ProductDB, PipelineStorage igr_path = IGRINSPath(config, utdate) igr_storage = PipelineStorage(igr_path) sky_filenames = igr_path.get_filenames(band, obsids) sky_basename = os.path.splitext(os.path.basename(sky_filenames[0]))[0] master_obsid = obsids[0] flaton_db_name = igr_path.get_section_filename_base( "PRIMARY_CALIB_PATH", "flat_on.db", ) flaton_db = ProductDB(flaton_db_name) #flaton_basename = flaton_db.query(band, master_obsid) thar_db_name = igr_path.get_section_filename_base( "PRIMARY_CALIB_PATH", "thar.db", ) thar_db = ProductDB(thar_db_name) #thar_basename = thar_db.query(band, master_obsid) # flaton_db = ProductDB(os.path.join(igr_path.secondary_calib_path, # "flat_on.db")) # thar_db = ProductDB(os.path.join(igr_path.secondary_calib_path, # "thar.db")) ap = load_aperture(igr_storage, band, master_obsid, flaton_db, thar_db) if 1: # from libs.process_thar import get_1d_median_specs raw_spec_product = get_1d_median_specs(sky_filenames, ap) # sky_master_fn_ = os.path.splitext(os.path.basename(sky_names[0]))[0] # sky_master_fn = igr_path.get_secondary_calib_filename(sky_master_fn_) import astropy.io.fits as pyfits masterhdu = pyfits.open(sky_filenames[0])[0] igr_storage.store(raw_spec_product, mastername=sky_filenames[0], masterhdu=masterhdu) # fn = sky_path.get_secondary_path("raw_spec") # raw_spec_product.save(fn, # masterhdu=masterhdu) from libs.master_calib import load_sky_ref_data # ref_date = "20140316" refdate = config.get_value("REFDATE", utdate) sky_ref_data = load_sky_ref_data(refdate, band) if 1: # initial wavelength solution # this need to be fixed # thar_db.query(sky_master_obsid) # json_name_ = "SDC%s_%s_0003.median_spectra.wvlsol" % (band, # igrins_log.date) from libs.storage_descriptions import THAR_WVLSOL_JSON_DESC thar_basename = thar_db.query(band, master_obsid) thar_wvl_sol = igr_storage.load([THAR_WVLSOL_JSON_DESC], thar_basename)[THAR_WVLSOL_JSON_DESC] #print thar_wvl_sol.keys() #["wvl_sol"] #json_name = thar_path.get_secondary_path("wvlsol_v0") #json_name = igr_path.get_secondary_calib_filename(json_name_) #thar_wvl_sol = PipelineProducts.load(json_name) if 1: # Now we fit with gaussian profile for matched positions. ohline_indices = sky_ref_data["ohline_indices"] ohlines_db = sky_ref_data["ohlines_db"] wvl_solutions = thar_wvl_sol["wvl_sol"] if 0: # it would be better to iteratively refit the solution fn = sky_path.get_secondary_path("wvlsol_v1") p = PipelineProducts.load(fn) wvl_solutionv = p["wvl_sol"] orders_w_solutions_ = thar_wvl_sol["orders"] from libs.storage_descriptions import ONED_SPEC_JSON_DESC orders_w_solutions = [ o for o in orders_w_solutions_ if o in raw_spec_product[ONED_SPEC_JSON_DESC]["orders"] ] _ = dict( zip(raw_spec_product[ONED_SPEC_JSON_DESC]["orders"], raw_spec_product[ONED_SPEC_JSON_DESC]["specs"])) s_list = [_[o] for o in orders_w_solutions] from libs.reidentify_ohlines import fit_ohlines ref_pixel_list, reidentified_lines = \ fit_ohlines(ohlines_db, ohline_indices, orders_w_solutions, wvl_solutions, s_list) # from scipy.interpolate import interp1d # from reidentify import reidentify_lines_all x = np.arange(2048) # line_indices_list = [ref_ohline_indices[str(o)] for o in igrins_orders[band]] ###### not fit identified lines from libs.ecfit import get_ordered_line_data, fit_2dspec, check_fit # d_x_wvl = {} # for order, z in echel.zdata.items(): # xy_T = affine_tr.transform(np.array([z.x, z.y]).T) # x_T = xy_T[:,0] # d_x_wvl[order]=(x_T, z.wvl) reidentified_lines_map = dict( zip(orders_w_solutions, reidentified_lines)) if band == "K": import libs.master_calib as master_calib fn = "hitran_bootstrap_K_%s.json" % refdate bootstrap_name = master_calib.get_master_calib_abspath(fn) import json bootstrap = json.load(open(bootstrap_name)) import libs.hitran as hitran r, ref_pixel_list = hitran.reidentify(wvl_solutions, s_list, bootstrap) # json_name = "hitran_reidentified_K_%s.json" % igrins_log.date # r = json.load(open(json_name)) for i, s in r.items(): ss = reidentified_lines_map[int(i)] ss0 = np.concatenate([ss[0], s["pixel"]]) ss1 = np.concatenate([ss[1], s["wavelength"]]) reidentified_lines_map[int(i)] = (ss0, ss1) xl, yl, zl = get_ordered_line_data(reidentified_lines_map) # xl : pixel # yl : order # zl : wvl * order x_domain = [0, 2047] y_domain = [orders_w_solutions[0] - 2, orders_w_solutions[-1] + 2] x_degree, y_degree = 4, 3 #x_degree, y_degree = 3, 2 p, m = fit_2dspec(xl, yl, zl, x_degree=x_degree, y_degree=y_degree, x_domain=x_domain, y_domain=y_domain) # derive wavelengths. xx = np.arange(2048) wvl_sol = [] for o in orders_w_solutions: oo = np.empty_like(xx) oo.fill(o) wvl = p(xx, oo) / o wvl_sol.append(list(wvl)) oh_sol_products = PipelineProducts( "Wavelength solution based on ohlines") #from libs.process_thar import ONED_SPEC_JSON from libs.products import PipelineDict from libs.storage_descriptions import SKY_WVLSOL_JSON_DESC oh_sol_products.add( SKY_WVLSOL_JSON_DESC, PipelineDict(orders=orders_w_solutions, wvl_sol=wvl_sol)) if 1: if 1: # save as WAT fits header xx = np.arange(0, 2048) xx_plus1 = np.arange(1, 2048 + 1) from astropy.modeling import models, fitting # We convert 2d chebyshev solution to a seriese of 1d # chebyshev. For now, use naive (and inefficient) # approach of refitting the solution with 1d. Should be # reimplemented. p1d_list = [] for o in orders_w_solutions: oo = np.empty_like(xx) oo.fill(o) wvl = p(xx, oo) / o * 1.e4 # um to angstrom p_init1d = models.Chebyshev1D(domain=[1, 2048], degree=p.x_degree) fit_p1d = fitting.LinearLSQFitter() p1d = fit_p1d(p_init1d, xx_plus1, wvl) p1d_list.append(p1d) from libs.iraf_helper import get_wat_spec, default_header_str wat_list = get_wat_spec(orders_w_solutions, p1d_list) # cards = [pyfits.Card.fromstring(l.strip()) \ # for l in open("echell_2dspec.header")] cards = [pyfits.Card.fromstring(l.strip()) \ for l in default_header_str] wat = "wtype=multispec " + " ".join(wat_list) char_per_line = 68 num_line, remainder = divmod(len(wat), char_per_line) for i in range(num_line): k = "WAT2_%03d" % (i + 1, ) v = wat[char_per_line * i:char_per_line * (i + 1)] #print k, v c = pyfits.Card(k, v) cards.append(c) if remainder > 0: i = num_line k = "WAT2_%03d" % (i + 1, ) v = wat[char_per_line * i:] #print k, v c = pyfits.Card(k, v) cards.append(c) if 1: # save fits with empty header header = pyfits.Header(cards) hdu = pyfits.PrimaryHDU(header=header, data=np.array([]).reshape((0, 0))) from libs.storage_descriptions import SKY_WVLSOL_FITS_DESC from libs.products import PipelineImage oh_sol_products.add(SKY_WVLSOL_FITS_DESC, PipelineImage([], np.array(wvl_sol))) igr_storage.store(oh_sol_products, mastername=sky_filenames[0], masterhdu=hdu) #fn = sky_path.get_secondary_path("wvlsol_v1.fits") #hdu.writeto(fn, clobber=True) if 0: # plot all spectra for w, s in zip(wvl_sol, s_list): plot(w, s) if 1: # filter out the line indices not well fit by the surface keys = reidentified_lines_map.keys() di_list = [len(reidentified_lines_map[k_][0]) for k_ in keys] endi_list = np.add.accumulate(di_list) filter_mask = [ m[endi - di:endi] for di, endi in zip(di_list, endi_list) ] #from itertools import compress # _ = [list(compress(indices, mm)) for indices, mm \ # in zip(line_indices_list, filter_mask)] # line_indices_list_filtered = _ reidentified_lines_ = [reidentified_lines_map[k_] for k_ in keys] _ = [(v_[0][mm], v_[1][mm]) for v_, mm \ in zip(reidentified_lines_, filter_mask)] reidentified_lines_map_filtered = dict(zip(orders_w_solutions, _)) if 1: from matplotlib.figure import Figure fig1 = Figure(figsize=(12, 7)) check_fit(fig1, xl, yl, zl, p, orders_w_solutions, reidentified_lines_map) fig1.tight_layout() fig2 = Figure(figsize=(12, 7)) check_fit(fig2, xl[m], yl[m], zl[m], p, orders_w_solutions, reidentified_lines_map_filtered) fig2.tight_layout() if 1: from libs.qa_helper import figlist_to_pngs sky_figs = igr_path.get_section_filename_base( "QA_PATH", "oh_fit2d", "oh_fit2d_" + sky_basename) figlist_to_pngs(sky_figs, [fig1, fig2]) if 1: from libs.products import ProductDB sky_db_name = igr_path.get_section_filename_base( "PRIMARY_CALIB_PATH", "sky.db", ) sky_db = ProductDB(sky_db_name) sky_db.update(band, sky_basename)
def process_distortion_sky_band(utdate, refdate, band, obsids, config): from libs.products import ProductDB, PipelineStorage igr_path = IGRINSPath(config, utdate) igr_storage = PipelineStorage(igr_path) sky_filenames = igr_path.get_filenames(band, obsids) sky_basename = os.path.splitext(os.path.basename(sky_filenames[0]))[0] master_obsid = obsids[0] flaton_db_name = igr_path.get_section_filename_base( "PRIMARY_CALIB_PATH", "flat_on.db", ) flaton_db = ProductDB(flaton_db_name) # thar_db_name = igr_path.get_section_filename_base("PRIMARY_CALIB_PATH", # "thar.db", # ) # thar_db = ProductDB(thar_db_name) from libs.storage_descriptions import (COMBINED_IMAGE_DESC, ONED_SPEC_JSON_DESC) raw_spec_products = igr_storage.load( [COMBINED_IMAGE_DESC, ONED_SPEC_JSON_DESC], sky_basename) # raw_spec_products = PipelineProducts.load(sky_path.get_secondary_path("raw_spec")) from libs.storage_descriptions import SKY_WVLSOL_JSON_DESC wvlsol_products = igr_storage.load([SKY_WVLSOL_JSON_DESC], sky_basename)[SKY_WVLSOL_JSON_DESC] orders_w_solutions = wvlsol_products["orders"] wvl_solutions = wvlsol_products["wvl_sol"] ap = load_aperture2(igr_storage, band, master_obsid, flaton_db, raw_spec_products[ONED_SPEC_JSON_DESC]["orders"], orders_w_solutions) #orders_w_solutions = ap.orders if 1: # load reference data from libs.master_calib import load_sky_ref_data ref_utdate = config.get_value("REFDATE", utdate) sky_ref_data = load_sky_ref_data(ref_utdate, band) ohlines_db = sky_ref_data["ohlines_db"] ref_ohline_indices = sky_ref_data["ohline_indices"] orders_w_solutions = wvlsol_products["orders"] wvl_solutions = wvlsol_products["wvl_sol"] if 1: n_slice_one_direction = 2 n_slice = n_slice_one_direction * 2 + 1 i_center = n_slice_one_direction slit_slice = np.linspace(0., 1., n_slice + 1) slice_center = (slit_slice[i_center], slit_slice[i_center + 1]) slice_up = [(slit_slice[i_center+i], slit_slice[i_center+i+1]) \ for i in range(1, n_slice_one_direction+1)] slice_down = [(slit_slice[i_center-i-1], slit_slice[i_center-i]) \ for i in range(n_slice_one_direction)] d = raw_spec_products[COMBINED_IMAGE_DESC].data s_center = ap.extract_spectra_v2(d, slice_center[0], slice_center[1]) s_up, s_down = [], [] for s1, s2 in slice_up: s = ap.extract_spectra_v2(d, s1, s2) s_up.append(s) for s1, s2 in slice_down: s = ap.extract_spectra_v2(d, s1, s2) s_down.append(s) if 1: # now fit #ohline_indices = [ref_ohline_indices[o] for o in orders_w_solutions] if 0: def test_order(oi): ax = subplot(111) ax.plot(wvl_solutions[oi], s_center[oi]) #ax.plot(wvl_solutions[oi], raw_spec_products["specs"][oi]) o = orders[oi] line_indices = ref_ohline_indices[o] for li in line_indices: um = np.take(ohlines_db.um, li) intensity = np.take(ohlines_db.intensity, li) ax.vlines(um, ymin=0, ymax=-intensity) from libs.reidentify_ohlines import fit_ohlines, fit_ohlines_pixel def get_reidentified_lines_OH(orders_w_solutions, wvl_solutions, s_center): ref_pixel_list, reidentified_lines = \ fit_ohlines(ohlines_db, ref_ohline_indices, orders_w_solutions, wvl_solutions, s_center) reidentified_lines_map = dict( zip(orders_w_solutions, reidentified_lines)) return reidentified_lines_map, ref_pixel_list if band == "H": reidentified_lines_map, ref_pixel_list_oh = \ get_reidentified_lines_OH(orders_w_solutions, wvl_solutions, s_center) def refit_centroid(s_center, ref_pixel_list=ref_pixel_list_oh): centroids = fit_ohlines_pixel(s_center, ref_pixel_list) return centroids else: # band K reidentified_lines_map, ref_pixel_list_oh = \ get_reidentified_lines_OH(orders_w_solutions, wvl_solutions, s_center) import libs.master_calib as master_calib fn = "hitran_bootstrap_K_%s.json" % ref_utdate bootstrap_name = master_calib.get_master_calib_abspath(fn) import json bootstrap = json.load(open(bootstrap_name)) import libs.hitran as hitran r, ref_pixel_dict_hitrans = hitran.reidentify( wvl_solutions, s_center, bootstrap) # for i, s in r.items(): # ss = reidentified_lines_map[int(i)] # ss0 = np.concatenate([ss[0], s["pixel"]]) # ss1 = np.concatenate([ss[1], s["wavelength"]]) # reidentified_lines_map[int(i)] = (ss0, ss1) #reidentified_lines_map, ref_pixel_list def refit_centroid(s_center, ref_pixel_list=ref_pixel_list_oh, ref_pixel_dict_hitrans=ref_pixel_dict_hitrans): centroids_oh = fit_ohlines_pixel(s_center, ref_pixel_list) s_dict = dict(zip(orders_w_solutions, s_center)) centroids_dict_hitrans = hitran.fit_hitrans_pixel( s_dict, ref_pixel_dict_hitrans) centroids = [] for o, c_oh in zip(orders_w_solutions, centroids_oh): if o in centroids_dict_hitrans: c = np.concatenate( [c_oh, centroids_dict_hitrans[o]["pixel"]]) centroids.append(c) else: centroids.append(c_oh) return centroids # reidentified_lines_map = get_reidentified_lines(orders_w_solutions, # wvl_solutions, # s_center) if 1: # TODO: we should not need this, instead recycle from preivious step. fitted_centroid_center = refit_centroid(s_center) # fitted_centroid_center = fit_ohlines_pixel(s_center, # ref_pixel_list) d_shift_up = [] for s in s_up: # TODO: ref_pixel_list_filtered need to be updated with recent fit. fitted_centroid = refit_centroid(s) # fitted_centroid = fit_ohlines_pixel(s, # ref_pixel_list) d_shift = [ b - a for a, b in zip(fitted_centroid_center, fitted_centroid) ] d_shift_up.append(d_shift) d_shift_down = [] for s in s_down: # TODO: ref_pixel_list_filtered need to be updated with recent fit. fitted_centroid = refit_centroid(s) # fitted_centroid = fit_ohlines_pixel(s, # ref_pixel_list) #fitted_centroid_center, d_shift = [ b - a for a, b in zip(fitted_centroid_center, fitted_centroid) ] d_shift_down.append(d_shift) if 1: # now fit orders = orders_w_solutions x_domain = [0, 2048] y_domain = [orders[0] - 2, orders[-1] + 2] xl = np.concatenate(fitted_centroid_center) yl_ = [ o + np.zeros_like(x_) for o, x_ in zip(orders, fitted_centroid_center) ] yl = np.concatenate(yl_) from libs.ecfit import fit_2dspec, check_fit_simple zl_list = [np.concatenate(d_) for d_ \ in d_shift_down[::-1] + d_shift_up] pm_list = [] for zl in zl_list: p, m = fit_2dspec(xl, yl, zl, x_degree=1, y_degree=1, x_domain=x_domain, y_domain=y_domain) pm_list.append((p, m)) zz_std_list = [] for zl, (p, m) in zip(zl_list, pm_list): z_m = p(xl[m], yl[m]) zz = z_m - zl[m] zz_std_list.append(zz.std()) fig_list = [] from matplotlib.figure import Figure for zl, (p, m) in zip(zl_list, pm_list): fig = Figure() check_fit_simple(fig, xl[m], yl[m], zl[m], p, orders) fig_list.append(fig) if 1: xi = np.linspace(0, 2048, 128 + 1) from astropy.modeling import fitting from astropy.modeling.polynomial import Chebyshev2D x_domain = [0, 2048] y_domain = [0., 1.] p2_list = [] for o in orders: oi = np.zeros_like(xi) + o shift_list = [] for p, m in pm_list[:n_slice_one_direction]: shift_list.append(p(xi, oi)) shift_list.append(np.zeros_like(xi)) for p, m in pm_list[n_slice_one_direction:]: shift_list.append(p(xi, oi)) p_init = Chebyshev2D(x_degree=1, y_degree=2, x_domain=x_domain, y_domain=y_domain) f = fitting.LinearLSQFitter() yi = 0.5 * (slit_slice[:-1] + slit_slice[1:]) xl, yl = np.meshgrid(xi, yi) zl = np.array(shift_list) p = f(p_init, xl, yl, zl) p2_list.append(p) if 1: p2_dict = dict(zip(orders, p2_list)) # save order_map, etc order_map = ap.make_order_map() slitpos_map = ap.make_slitpos_map() order_map2 = ap.make_order_map(mask_top_bottom=True) slitoffset_map = np.empty_like(slitpos_map) slitoffset_map.fill(np.nan) wavelength_map = np.empty_like(slitpos_map) wavelength_map.fill(np.nan) from scipy.interpolate import interp1d for o, wvl in zip(ap.orders, wvl_solutions): xi = np.arange(0, 2048) xl, yl = np.meshgrid(xi, xi) msk = order_map == o xl_msk = xl[msk] slitoffset_map_msk = p2_dict[o](xl_msk, slitpos_map[msk]) slitoffset_map[msk] = slitoffset_map_msk wvl_interp1d = interp1d(xi, wvl, bounds_error=False) wavelength_map[msk] = wvl_interp1d(xl_msk - slitoffset_map_msk) from libs.storage_descriptions import (ORDERMAP_FITS_DESC, SLITPOSMAP_FITS_DESC, SLITOFFSET_FITS_DESC, WAVELENGTHMAP_FITS_DESC, ORDERMAP_MASKED_FITS_DESC) from libs.products import PipelineImage, PipelineProducts products = PipelineProducts("Distortion map") for desc, im in [(ORDERMAP_FITS_DESC, order_map), (SLITPOSMAP_FITS_DESC, slitpos_map), (SLITOFFSET_FITS_DESC, slitoffset_map), (WAVELENGTHMAP_FITS_DESC, wavelength_map), (ORDERMAP_MASKED_FITS_DESC, order_map2)]: products.add(desc, PipelineImage([], im)) igr_storage.store(products, mastername=sky_filenames[0], masterhdu=None) from libs.qa_helper import figlist_to_pngs sky_figs = igr_path.get_section_filename_base( "QA_PATH", "oh_distortion", "oh_distortion_" + sky_basename) print fig_list figlist_to_pngs(sky_figs, fig_list) if 0: # test x = np.arange(2048, dtype="d") oi = 10 o = orders[oi] yi = 0.5 * (slit_slice[:-1] + slit_slice[1:]) ax1 = subplot(211) s1 = s_up[-1][oi] s2 = s_down[-1][oi] ax1.plot(x, s1) ax1.plot(x, s2) ax2 = subplot(212, sharex=ax1, sharey=ax1) dx1 = p2_dict[o](x, yi[-1] + np.zeros_like(x)) ax2.plot(x - dx1, s1) dx2 = p2_dict[o](x, yi[0] + np.zeros_like(x)) ax2.plot(x - dx2, s2)