def resnet_v1_200(inputs, num_classes=None, is_training=True, global_pool=True, output_stride=None, reuse=None, scope='resnet_v1_200'): """ResNet-200 model of [2]. See resnet_v1() for arg and return description.""" blocks = [ resnet_utils.Block('block1', bottleneck, [(256, 64, 1)] * 2 + [(256, 64, 2)]), resnet_utils.Block('block2', bottleneck, [(512, 128, 1)] * 23 + [(512, 128, 2)]), resnet_utils.Block('block3', bottleneck, [(1024, 256, 1)] * 35 + [(1024, 256, 2)]), resnet_utils.Block('block4', bottleneck, [(2048, 512, 1)] * 3) ] return resnet_v1(inputs, blocks, num_classes, is_training, global_pool=global_pool, output_stride=output_stride, include_root_block=True, reuse=reuse, scope=scope)
def resnet_v1_block(scope, base_depth, num_units, stride): """Helper function for creating a resnet_v1 bottleneck block. Args: scope: The scope of the block. base_depth: The depth of the bottleneck layer for each unit. num_units: The number of units in the block. stride: The stride of the block, implemented as a stride in the last unit. All other units have stride=1. Returns: A resnet_v1 bottleneck block. """ return resnet_utils.Block(scope, bottleneck, [{ 'depth': base_depth * 4, 'depth_bottleneck': base_depth, 'stride': 1 }] * (num_units - 1) + [{ 'depth': base_depth * 4, 'depth_bottleneck': base_depth, 'stride': stride }])