Exemple #1
0
def main():
    image = tf.placeholder(dtype=tf.float32, shape=[1, None, None, 3], name='image')

    net, end_points = deeplabv3(image, num_classes=args.num_classes, depth=args.num_layers, is_training=False)

    raw_output = end_points['resnet_v1_{}/logits'.format(args.num_layers)]
    with tf.variable_scope('inference_out'):
        seg_pred = tf.argmax(raw_output, axis=3)
    # Set up tf session and initialize variables.
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True

    graph = tf.get_default_graph()
    input_graph_def = graph.as_graph_def()

    with tf.Session(config=config) as sess:

        image_data = np.array(Image.open('./datasets/IDImage/JPGImage/id00001.jpg'))
        image_data = np.expand_dims(image_data,0)

        sess.run(tf.global_variables_initializer())
        sess.run(tf.local_variables_initializer())

        restore_var = [v for v in tf.global_variables()]
        loader = tf.train.Saver(var_list=restore_var)
        load(loader, sess, args.snapshot_dir)

        run_ops = [seg_pred];output_node_names = ['inference_out/ArgMax']
        sess.run(run_ops, feed_dict={image: image_data,})

        output_graph_def = graph_util.convert_variables_to_constants(sess, input_graph_def,output_node_names)

        with tf.gfile.GFile(os.path.join(pb_path, "model.pb"), "wb") as f:
            f.write(output_graph_def.SerializeToString())
Exemple #2
0
    def test_setup(self):
        # Create queue coordinator.
        num_layers = 50
        self.coord = tf.train.Coordinator()

        # Load reader
        with tf.name_scope("create_inputs"):
            reader = ImageReader(
                self.conf.data_dir,
                self.conf.valid_data_list,
                None,  # the images have different sizes
                False,  # no data-aug
                False,  # no data-aug
                self.conf.ignore_label,
                IMG_MEAN,
                self.coord)
            image, label = reader.image, reader.label  # [h, w, 3 or 1]
        # Add one batch dimension [1, h, w, 3 or 1]
        self.image_batch, self.label_batch = tf.expand_dims(
            image, dim=0), tf.expand_dims(label, dim=0)

        # Create network
        net, end_points = deeplabv3(self.image_batch,
                                    num_classes=self.conf.num_classes,
                                    depth=num_layers,
                                    is_training=True)
        raw_output = end_points['resnet{}/logits'.format(num_layers)]

        # predictions
        #raw_output = net.o  # [batch_size, 41, 41, 21]
        raw_output = tf.image.resize_bilinear(
            raw_output,
            tf.shape(self.image_batch)[1:3, ])
        raw_output = tf.argmax(raw_output, axis=3)
        pred = tf.expand_dims(raw_output, dim=3)
        self.pred = tf.reshape(pred, [
            -1,
        ])
        # labels
        gt = tf.reshape(self.label_batch, [
            -1,
        ])
        # Ignoring all labels greater than or equal to n_classes.
        temp = tf.less_equal(gt, self.conf.num_classes - 1)
        weights = tf.cast(temp, tf.int32)

        # fix for tf 1.3.0
        gt = tf.where(temp, gt, tf.cast(temp, tf.uint8))

        # Pixel accuracy
        self.accu, self.accu_update_op = tf.contrib.metrics.streaming_accuracy(
            self.pred, gt, weights=weights)

        # mIoU
        self.mIoU, self.mIou_update_op = tf.contrib.metrics.streaming_mean_iou(
            self.pred, gt, num_classes=self.conf.num_classes, weights=weights)

        # Loader for loading the checkpoint
        self.loader = tf.train.Saver(var_list=tf.global_variables())
Exemple #3
0
def main():
    """Create the model and start the training."""
    tf.set_random_seed(args.random_seed)

    # Create queue coordinator.
    coord = tf.train.Coordinator()

    image_batch, label_batch = read_data(is_training=args.is_training,
                                         split_name=args.split_name)

    # Create network.
    net, end_points = deeplabv3(image_batch,
                                num_classes=args.num_classes,
                                depth=args.num_layers,
                                is_training=False)

    # For a small batch size, it is better to keep
    # the statistics of the BN layers (running means and variances)
    # frozen, and to not update the values provided by the pre-trained model.
    # If is_training=True, the statistics will be updated during the training.
    # Note that is_training=False still updates BN parameters gamma (scale) and beta (offset)
    # if they are presented in var_list of the optimiser definition.

    # Which variables to load. Running means and variances are not trainable,
    # thus all_variables() should be restored.
    restore_var = [
        v for v in tf.global_variables()
        if 'fc' not in v.name or not args.not_restore_last
    ]

    # Predictions.
    raw_output = end_points['resnet_v1_{}/logits'.format(args.num_layers)]
    # Predictions: ignoring all predictions with labels greater or equal than n_classes
    # nh, nw = tf.shape(image_batch)[1], tf.shape(image_batch)[2]
    # seg_logits = tf.image.resize_bilinear(raw_output, [nh, nw])

    seg_pred = tf.argmax(raw_output, axis=3)

    to_save = seg_pred
    seg_pred = tf.expand_dims(seg_pred, 3)
    seg_pred = tf.reshape(seg_pred, [
        -1,
    ])

    seg_gt = tf.cast(label_batch, tf.int32)
    seg_gt = tf.reshape(seg_gt, [
        -1,
    ])

    mask = seg_gt <= args.num_classes - 1
    seg_pred = tf.boolean_mask(seg_pred, mask)
    seg_gt = tf.boolean_mask(seg_gt, mask)

    mean_iou, update_mean_iou = streaming_mean_iou(
        seg_pred, seg_gt, num_classes=args.num_classes)

    # Set up tf session and initialize variables.
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    sess = tf.Session(config=config)

    sess.run(tf.global_variables_initializer())
    sess.run(tf.local_variables_initializer())

    # Load variables if the checkpoint is provided.
    if args.ckpt > 0 or args.restore_from is not None:
        loader = tf.train.Saver(var_list=restore_var)
        load(loader, sess, args.snapshot_dir)

    # Start queue threads.
    threads = tf.train.start_queue_runners(coord=coord, sess=sess)

    tf.get_default_graph().finalize()
    mean_ious = {}
    sum = 0
    for step in range(125):
        start_time = time.time()
        score_map, picture, mean_iou_float, _ = sess.run(
            [raw_output, to_save, mean_iou, update_mean_iou])
        picture = np.squeeze(picture)
        with open('./datasets/IDImage/{}.txt'.format(args.split_name),
                  'r') as f:
            lines = f.readlines()
        output_name = lines[step].split('/')[-1][:-1]
        mean_ious['{}'.format(output_name.split('.')[0])] = mean_iou_float
        save_path = os.path.join(args.output_path, output_name)
        pyplot.imsave(save_path, picture)
        duration = time.time() - start_time
        sys.stdout.write(
            'step {:d}, mean_iou: {:.6f}({:.3f} sec/step)\n'.format(
                step, mean_iou_float, duration))
        sys.stdout.flush()

        if coord.should_stop():
            coord.request_stop()
            coord.join(threads)
    for item in mean_ious.values():
        sum += item
    print('===============================')
    print(sum / (NUM_VAL - 1))
    print('===============================')
Exemple #4
0
    def train_setup(self, reuse=False):
        tf.set_random_seed(self.conf.random_seed)
        num_layers = 50  #-----------------------------------------------------------------------------------------

        # Create queue coordinator.
        self.coord = tf.train.Coordinator()
        self.n_gpu = self.conf.n_gpu

        # Input size
        self.input_size = (self.conf.input_height, self.conf.input_width)
        j_step = 0
        with tf.name_scope("create_inputs"):
            reader = ImageReader(self.conf.data_dir, self.conf.data_list,
                                 self.input_size, self.conf.random_scale,
                                 self.conf.random_mirror,
                                 self.conf.ignore_label, IMG_MEAN, self.coord)
            # print "1"*22
            # print reader
        image_data, image_label = reader.dequeue(self.conf.batch_size)
        self.image_data = image_data
        if tf.__version__.startswith('1.'):
            split_train_data_node = tf.split(image_data, self.n_gpu)
            split_train_labels_node = tf.split(image_label, self.n_gpu)
        else:
            split_train_data_node = tf.split(0, self.n_gpu, image_data)
            split_train_labels_node = tf.split(0, self.n_gpu, image_label)
        with tf.variable_scope(tf.get_variable_scope()):
            all_loss = []
            for device_index, (i, self.image_batch,
                               self.label_batch) in enumerate(
                                   zip([1], split_train_data_node,
                                       split_train_labels_node)):
                with tf.device('/gpu:%d' % i):
                    #print i
                    with tf.name_scope('%s_%d' % ("gpu", i)) as scope:
                        if j_step == 0:
                            j_step = 1
                            pass
                        else:
                            reuse = True
                        # net = DeepLab_v2_Network(self.image_batch, num_classes=self.conf.num_classes,
                        #                          is_training=self.conf.is_training ,reuse=reuse)
                        net, end_points = deeplabv3(
                            self.image_batch,
                            num_classes=self.conf.num_classes,
                            depth=num_layers,
                            is_training=True,
                            reuse=reuse)
                        self.raw_output = end_points[
                            'gpu_{}/resnet{}/logits'.format(i, num_layers)]
                        # Network raw output
                        # [batch_size, 41, 41, 21]
                        output_size = (self.raw_output.shape[1].value,
                                       self.raw_output.shape[2].value)

                        label_proc = prepare_label(
                            self.label_batch,
                            output_size,
                            num_classes=self.conf.num_classes,
                            one_hot=False)  # [batch_size, 41, 41]
                        raw_gt = tf.reshape(label_proc, [
                            -1,
                        ])
                        indices = tf.squeeze(
                            tf.where(
                                tf.less_equal(raw_gt,
                                              self.conf.num_classes - 1)), 1)
                        gt = tf.cast(tf.gather(raw_gt, indices), tf.int32)
                        raw_prediction = tf.reshape(
                            self.raw_output, [-1, self.conf.num_classes])
                        # print raw_prediction
                        # print gt
                        prediction = raw_prediction
                        # prediction = tf.expand_dims(raw_prediction,  3)
                        # prediction = tl.act.pixel_wise_softmax(prediction)
                        # print prediction
                        # print label_proc
                        # loss = 1 - tl.cost.dice_coe(prediction, label_proc, axis=[1, 2, 3, 4])
                        loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
                            logits=prediction, labels=gt)
                        l2_losses = [
                            self.conf.weight_decay * tf.nn.l2_loss(v)
                            for v in tf.trainable_variables()
                            if 'weights' in v.name
                        ]
                        # Loss function
                        all_loss.append(
                            tf.reduce_mean(loss) + tf.add_n(l2_losses))
                        tf.get_variable_scope().reuse_variables()

        # Output size
        #output_size = (self.raw_output.shape[1].value, self.raw_output.shape[2].value)

        # Variables that load from pre-trained model.
        # For training, last few layers should not be loaded.
        if self.conf.pretrain_file is not None:
            restore_var = [
                v for v in tf.global_variables() if 'fc' not in v.name
            ]
            original_step = int(self.conf.pretrain_file.split("-")[-1])
        else:
            original_step = 0
        num_steps = self.conf.num_steps + original_step
        # Trainable Variables
        # Note that is_training=False still updates BN parameters gamma (scale) and beta (offset)
        # if they are presented in var_list of the optimiser definition.
        # So we remove them from the list.
        all_trainable = [
            v for v in tf.trainable_variables()
            if 'beta' not in v.name and 'gamma' not in v.name
        ]
        # Fine-tune part
        conv_trainable = [v for v in all_trainable
                          if 'fc' not in v.name]  # lr * 1.0
        # ASPP part
        fc_trainable = [v for v in all_trainable if 'fc' in v.name]
        # fc_w_trainable = [v for v in fc_trainable if 'weights' in v.name]  # lr * 10.0
        # fc_b_trainable = [v for v in fc_trainable if 'biases' in v.name]  # lr * 20.0
        # check
        #assert (len(all_trainable) == len(fc_trainable) + len(conv_trainable))
        #assert (len(fc_trainable) == len(fc_w_trainable) + len(fc_b_trainable))

        # Groud Truth: ignoring all labels greater or equal than n_classes
        #label_proc = prepare_label(self.label_batch, output_size, num_classes=self.conf.num_classes,
        #one_hot=False)  # [batch_size, 41, 41]
        #raw_gt = tf.reshape(label_proc, [-1, ])
        #indices = tf.squeeze(tf.where(tf.less_equal(raw_gt, self.conf.num_classes - 1)), 1)
        #gt = tf.cast(tf.gather(raw_gt, indices), tf.int32)
        #raw_prediction = tf.reshape(self.raw_output, [-1, self.conf.num_classes])
        #prediction = tf.gather(raw_prediction, indices)

        # Pixel-wise softmax_cross_entropy loss
        #loss = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=prediction, labels=gt)
        # L2 regularization
        #l2_losses = [self.conf.weight_decay * tf.nn.l2_loss(v) for v in tf.trainable_variables() if 'weights' in v.name]
        # Loss function
        self.reduced_loss = tf.add_n(all_loss) / self.n_gpu
        #self.reduced_loss = tf.reduce_mean(loss) + tf.add_n(l2_losses)

        # Define optimizers
        # 'poly' learning rate
        base_lr = tf.constant(self.conf.learning_rate)
        self.curr_step = tf.placeholder(dtype=tf.float32, shape=())
        self.loss_trans = tf.placeholder(dtype=tf.float32, shape=())
        self.final_loss = (self.reduced_loss + self.loss_trans) / 2

        learning_rate = tf.scalar_mul(
            base_lr, tf.pow((1 - self.curr_step / num_steps), self.conf.power))
        #print self.conf.power
        self.learning_rate = learning_rate
        #print  learning_rate
        # We have several optimizers here in order to handle the different lr_mult
        # which is a kind of parameters in Caffe. This controls the actual lr for each
        # layer.
        opt = tf.train.AdamOptimizer(learning_rate, self.conf.momentum, 0.98)
        #opt= tf.train.MomentumOptimizer(learning_rate, self.conf.momentum)
        #opt_fc_w = tf.train.AdamOptimizer(learning_rate , self.conf.momentum,0.98)
        #opt_fc_b = tf.train.AdamOptimizer(learning_rate , self.conf.momentum,0.98)
        #opt_conv = tf.train.MomentumOptimizer(learning_rate, self.conf.momentum)
        #opt_fc_w = tf.train.MomentumOptimizer(learning_rate * 10.0, self.conf.momentum)
        #opt_fc_b = tf.train.MomentumOptimizer(learning_rate * 20.0, self.conf.momentum)
        # To make sure each layer gets updated by different lr's, we do not use 'minimize' here.
        # Instead, we separate the steps compute_grads+update_params.
        # Compute grads
        grads_conv = tf.gradients(self.final_loss, conv_trainable)
        # train_op = opt.apply_gradients(zip(grads_conv, conv_trainable))
        #grads = tf.gradients(self.reduced_loss, conv_trainable + fc_w_trainable + fc_b_trainable)
        grads_conv = grads_conv[:len(conv_trainable)]
        # grads_fc_w = grads[len(conv_trainable): (len(conv_trainable) + len(fc_w_trainable))]
        # grads_fc_b = grads[(len(conv_trainable) + len(fc_w_trainable)):]
        # Update params
        train_op_conv = opt.apply_gradients(zip(grads_conv, conv_trainable))
        # train_op_conv = opt_conv.apply_gradients(zip(grads_conv, conv_trainable))
        # train_op_fc_w = opt_fc_w.apply_gradients(zip(grads_fc_w, fc_w_trainable))
        # train_op_fc_b = opt_fc_b.apply_gradients(zip(grads_fc_b, fc_b_trainable))
        # Finally, get the train_op!
        self.train_op = train_op_conv
        # Saver for storing checkpoints of the model
        self.saver = tf.train.Saver(var_list=tf.global_variables(),
                                    max_to_keep=0)

        # Loader for loading the pre-trained model
        if self.conf.pretrain_file is not None:
            self.loader = tf.train.Saver(var_list=restore_var)
Exemple #5
0
def main():
    """Create the model and start the training."""
    h = args.input_size
    w = args.input_size
    input_size = (h, w)

    tf.set_random_seed(args.random_seed)

    # Create queue coordinator.
    coord = tf.train.Coordinator()

    image_batch, label_batch = read_data(is_training=True)

    # Create network.
    net, end_points = deeplabv3(
        image_batch,
        num_classes=args.num_classes,
        depth=args.num_layers,
        is_training=True,
    )
    # For a small batch size, it is better to keep
    # the statistics of the BN layers (running means and variances)
    # frozen, and to not update the values provided by the pre-trained model.
    # If is_training=True, the statistics will be updated during the training.
    # Note that is_training=False still updates BN parameters gamma (scale)
    # and beta (offset)
    # if they are presented in var_list of the optimizer definition.

    # Predictions.
    raw_output = end_points['resnet{}/logits'.format(args.num_layers)]
    # Which variables to load. Running means and variances are not trainable,
    # thus all_variables() should be restored.
    restore_var = [
        v for v in tf.global_variables()
        if 'fc' not in v.name or not args.not_restore_last
    ]
    if args.freeze_bn:
        all_trainable = [
            v for v in tf.trainable_variables()
            if 'beta' not in v.name and 'gamma' not in v.name
        ]
    else:
        all_trainable = [v for v in tf.trainable_variables()]
    conv_trainable = [v for v in all_trainable if 'fc' not in v.name]

    # Upsample the logits instead of donwsample the ground truth
    raw_output_up = tf.image.resize_bilinear(raw_output, [h, w])

    # Predictions: ignoring all predictions with labels greater or equal than
    # n_classes
    label_proc = tf.squeeze(label_batch)
    mask = label_proc <= args.num_classes
    seg_logits = tf.boolean_mask(raw_output_up, mask)
    seg_gt = tf.boolean_mask(label_proc, mask)
    seg_gt = tf.cast(seg_gt, tf.int32)

    # Pixel-wise softmax loss.
    loss = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=seg_logits,
                                                          labels=seg_gt)
    seg_loss = tf.reduce_mean(loss)
    seg_loss_sum = tf.summary.scalar('loss/seg', seg_loss)
    reg_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
    reg_loss = tf.add_n(reg_losses)
    reg_loss_sum = tf.summary.scalar('loss/reg', reg_loss)
    tot_loss = seg_loss + reg_loss
    tot_loss_sum = tf.summary.scalar('loss/tot', tot_loss)

    seg_pred = tf.argmax(seg_logits, axis=1)
    train_mean_iou, train_update_mean_iou = streaming_mean_iou(
        seg_pred, seg_gt, args.num_classes, name="train_iou")
    train_iou_sum = tf.summary.scalar('accuracy/train_mean_iou',
                                      train_mean_iou)
    train_initializer = tf.variables_initializer(var_list=tf.get_collection(
        tf.GraphKeys.LOCAL_VARIABLES, scope="train_iou"))

    # Define loss and optimisation parameters.
    base_lr = tf.constant(args.learning_rate)
    step_ph = tf.placeholder(dtype=tf.float32, shape=())
    learning_rate = tf.scalar_mul(
        base_lr, tf.pow((1 - step_ph / args.num_steps), args.power))
    # learning_rate = base_lr
    lr_sum = tf.summary.scalar('params/learning_rate', learning_rate)

    train_sum_op = tf.summary.merge(
        [seg_loss_sum, reg_loss_sum, tot_loss_sum, train_iou_sum, lr_sum])

    image_batch_val, label_batch_val = read_data(is_training=False)
    _, end_points_val = deeplabv3(
        image_batch_val,
        num_classes=args.num_classes,
        depth=args.num_layers,
        reuse=True,
        is_training=False,
    )
    raw_output_val = end_points_val['resnet{}/logits'.format(args.num_layers)]
    nh, nw = tf.shape(image_batch_val)[1], tf.shape(image_batch_val)[2]

    seg_logits_val = tf.image.resize_bilinear(raw_output_val, [nh, nw])
    seg_pred_val = tf.argmax(seg_logits_val, axis=3)
    seg_pred_val = tf.expand_dims(seg_pred_val, 3)
    seg_pred_val = tf.reshape(seg_pred_val, [
        -1,
    ])

    seg_gt_val = tf.cast(label_batch_val, tf.int32)
    seg_gt_val = tf.reshape(seg_gt_val, [
        -1,
    ])
    mask_val = seg_gt_val <= args.num_classes - 1

    seg_pred_val = tf.boolean_mask(seg_pred_val, mask_val)
    seg_gt_val = tf.boolean_mask(seg_gt_val, mask_val)

    val_mean_iou, val_update_mean_iou = streaming_mean_iou(
        seg_pred_val, seg_gt_val, num_classes=args.num_classes, name="val_iou")
    val_iou_sum = tf.summary.scalar('accuracy/val_mean_iou', val_mean_iou)
    val_initializer = tf.variables_initializer(var_list=tf.get_collection(
        tf.GraphKeys.LOCAL_VARIABLES, scope="val_iou"))
    test_sum_op = tf.summary.merge([val_iou_sum])

    global_step = tf.train.get_or_create_global_step()

    opt = tf.train.MomentumOptimizer(learning_rate, args.momentum)

    grads_conv = tf.gradients(tot_loss, conv_trainable)
    # train_op = opt.apply_gradients(zip(grads_conv, conv_trainable))
    train_op = slim.learning.create_train_op(tot_loss,
                                             opt,
                                             global_step=global_step,
                                             variables_to_train=conv_trainable,
                                             summarize_gradients=True)

    # Set up tf session and initialize variables.
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    sess = tf.Session(config=config)

    sess.run(tf.global_variables_initializer())
    sess.run(tf.local_variables_initializer())

    # Saver for storing checkpoints of the model.
    saver = tf.train.Saver(var_list=tf.global_variables(), max_to_keep=20)

    # Load variables if the checkpoint is provided.
    if args.ckpt > 0 or args.restore_from is not None:
        loader = tf.train.Saver(var_list=restore_var)
        load(loader, sess, args.snapshot_dir)

    # Start queue threads.
    threads = tf.train.start_queue_runners(coord=coord, sess=sess)

    # tf.get_default_graph().finalize()
    summary_writer = tf.summary.FileWriter(args.snapshot_dir, sess.graph)

    # Iterate over training steps.
    for step in range(args.ckpt, args.num_steps):
        start_time = time.time()
        feed_dict = {step_ph: step}
        tot_loss_float, seg_loss_float, reg_loss_float, _, lr_float, _, train_summary = sess.run(
            [
                tot_loss, seg_loss, reg_loss, train_op, learning_rate,
                train_update_mean_iou, train_sum_op
            ],
            feed_dict=feed_dict)
        train_mean_iou_float = sess.run(train_mean_iou)
        duration = time.time() - start_time
        sys.stdout.write('step {:d}, tot_loss = {:.6f}, seg_loss = {:.6f}, ' \
            'reg_loss = {:.6f}, mean_iou = {:.6f}, lr: {:.6f}({:.3f}' \
            'sec/step)\n'.format(step, tot_loss_float, seg_loss_float,
             reg_loss_float, train_mean_iou_float, lr_float, duration)
            )
        sys.stdout.flush()

        if step % args.save_pred_every == 0 and step > args.ckpt:
            summary_writer.add_summary(train_summary, step)
            sess.run(val_initializer)
            for val_step in range(NUM_VAL - 1):
                _, test_summary = sess.run([val_update_mean_iou, test_sum_op],
                                           feed_dict=feed_dict)

            summary_writer.add_summary(test_summary, step)
            val_mean_iou_float = sess.run(val_mean_iou)

            save(saver, sess, args.snapshot_dir, step)
            sys.stdout.write('step {:d}, train_mean_iou: {:.6f}, ' \
                'val_mean_iou: {:.6f}\n'.format(step, train_mean_iou_float,
                val_mean_iou_float))
            sys.stdout.flush()
            sess.run(train_initializer)

        if coord.should_stop():
            coord.request_stop()
            coord.join(threads)
Exemple #6
0
def main(snapshot_dir, image_path, output_path):
    """Create the model and start the training."""
    tf.set_random_seed(args.random_seed)

    # Create queue coordinator.
    coord = tf.train.Coordinator()

    os.environ['CUDA_VISIBLE_DEVICES'] = '2'

    image = tf.placeholder(dtype=tf.int32, shape=[None, None, 3], name='image')

    image_float = tf.to_float(image)
    image_reverse = tf.reverse(image_float, axis=[-1])
    image_norm = image_reverse - IMG_MEAN
    image_batch = tf.expand_dims(image_norm, axis=0)

    # Create network.
    net, end_points = deeplabv3(image_batch,
                                num_classes=args.num_classes,
                                depth=args.num_layers,
                                is_training=False)

    restore_var = [
        v for v in tf.global_variables()
        if 'fc' not in v.name or not args.not_restore_last
    ]

    # Predictions.
    raw_output = end_points['resnet_v1_{}/logits'.format(args.num_layers)]
    out_put_score = tf.nn.softmax(raw_output, axis=3)
    out_put_score = tf.reduce_max(out_put_score, axis=3)
    seg_pred = tf.argmax(raw_output, axis=3, output_type=tf.int32)

    # Set up tf session and initialize variables.
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    sess = tf.Session(config=config)

    sess.run(tf.global_variables_initializer())
    sess.run(tf.local_variables_initializer())

    # Load variables if the checkpoint is provided.
    # if args.ckpt > 0 or args.restore_from is not None:
    loader = tf.train.Saver(var_list=restore_var)
    load(loader, sess, snapshot_dir)

    graph = tf.get_default_graph()
    input_graph_def = graph.as_graph_def()

    # Start queue threads.
    threads = tf.train.start_queue_runners(coord=coord, sess=sess)
    tf.get_default_graph().finalize()

    file_list = os.listdir(image_path)
    # image_file = file_list[0]
    image_file = '/home/gq/xnetsrc/image/id00018.jpg'
    file_path = os.path.join(image_path, image_file)
    image_data = cv2.imread(file_path, cv2.IMREAD_COLOR)
    _, seg = sess.run([out_put_score, seg_pred], {image: image_data})

    output_node_names = ['Max', 'ArgMax']
    output_graph_def = graph_util.convert_variables_to_constants(
        sess, input_graph_def, output_node_names)

    pb_file = os.path.join(snapshot_dir, "model.pb")
    with tf.gfile.GFile(pb_file, "wb") as f:
        f.write(output_graph_def.SerializeToString())

    print("%d ops in the final graph." % len(output_graph_def.node))

    with tf.gfile.GFile(pb_file, "rb") as f:
        graph_def = tf.GraphDef()
        graph_def.ParseFromString(f.read())

    def print_ops():
        with tf.Graph().as_default() as graph:
            tf.import_graph_def(graph_def,
                                input_map=None,
                                return_elements=None,
                                name="prefix",
                                op_dict=None,
                                producer_op_list=None)

        for op in graph.get_operations():
            print(op.name, op.values())

    print_ops()

    if coord.should_stop():
        coord.request_stop()
        coord.join(threads)
Exemple #7
0
def main():
    """Create the model and start the training."""
    h = args.input_size
    w = args.input_size
    input_size = (h, w)

    tf.set_random_seed(args.random_seed)

    # Create queue coordinator.
    coord = tf.train.Coordinator()

    image_batch, label_batch = read_data()

    # Create network.
    net, end_points = deeplabv3(image_batch,
                                num_classes=args.num_classes,
                                layer_depth=args.num_layers,
                                is_training=args.is_training)
    # For a small batch size, it is better to keep
    # the statistics of the BN layers (running means and variances)
    # frozen, and to not update the values provided by the pre-trained model.
    # If is_training=True, the statistics will be updated during the training.
    # Note that is_training=False still updates BN parameters gamma (scale) and beta (offset)
    # if they are presented in var_list of the optimiser definition.

    # Predictions.
    raw_output = end_points['resnet{}/logits'.format(args.num_layers)]
    # Which variables to load. Running means and variances are not trainable,
    # thus all_variables() should be restored.
    restore_var = [
        v for v in tf.global_variables()
        if 'fc' not in v.name or not args.not_restore_last
    ]
    all_trainable = [
        v for v in tf.trainable_variables()
        if 'beta' not in v.name and 'gamma' not in v.name
    ]
    conv_trainable = [v for v in all_trainable
                      if 'fc' not in v.name]  # lr * 1.0

    # Predictions: ignoring all predictions with labels greater or equal than n_classes
    label_proc = prepare_label(label_batch,
                               tf.shape(raw_output)[1:3],
                               args.num_classes,
                               one_hot=False)
    mask = label_proc <= args.num_classes
    seg_logits = tf.boolean_mask(raw_output, mask)
    seg_gt = tf.boolean_mask(label_proc, mask)
    seg_gt = tf.cast(seg_gt, tf.int32)

    # Pixel-wise softmax loss.
    loss = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=seg_logits,
                                                          labels=seg_gt)
    seg_loss = tf.reduce_mean(loss)
    tf.summary.scalar('loss/seg', seg_loss)
    reg_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
    reg_loss = args.weight_decay * tf.add_n(reg_losses)
    tf.summary.scalar('loss/reg', reg_loss)
    total_loss = seg_loss + reg_loss
    tf.summary.scalar('loss/tot', total_loss)

    seg_pred = tf.argmax(seg_logits, axis=1)
    mean_iou, update_mean_iou = streaming_mean_iou(seg_pred, seg_gt,
                                                   args.num_classes)
    tf.summary.scalar('accuracy/mean_iou', mean_iou)

    summary_op = tf.summary.merge_all()

    global_step = slim.get_or_create_global_step()

    # Define loss and optimisation parameters.
    base_lr = tf.constant(args.learning_rate)
    step_ph = tf.placeholder(dtype=tf.float32, shape=())
    learning_rate = tf.scalar_mul(
        base_lr, tf.pow((1 - step_ph / args.num_steps), args.power))
    # learning_rate = base_lr
    tf.summary.scalar('hyperparameters/learning_rate', learning_rate)

    opt = tf.train.MomentumOptimizer(learning_rate, args.momentum)

    grads_conv = tf.gradients(total_loss, conv_trainable)
    # train_op = opt.apply_gradients(zip(grads_conv, conv_trainable))
    train_op = slim.learning.create_train_op(total_loss,
                                             opt,
                                             global_step=global_step,
                                             variables_to_train=conv_trainable,
                                             summarize_gradients=True)

    # Set up tf session and initialize variables.
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    sess = tf.Session(config=config)

    sess.run(tf.global_variables_initializer())
    sess.run(tf.local_variables_initializer())

    # Saver for storing checkpoints of the model.
    saver = tf.train.Saver(var_list=tf.global_variables(), max_to_keep=20)

    # Load variables if the checkpoint is provided.
    if args.ckpt > 0 or args.restore_from is not None:
        loader = tf.train.Saver(var_list=restore_var)
        load(loader, sess, args.snapshot_dir)

    # Start queue threads.
    threads = tf.train.start_queue_runners(coord=coord, sess=sess)

    tf.get_default_graph().finalize()
    summary_writer = tf.summary.FileWriter(args.snapshot_dir, sess.graph)

    # Iterate over training steps.
    for step in range(args.ckpt, args.num_steps):
        # for step in range(1):
        start_time = time.time()
        feed_dict = {step_ph: step}
        if step % args.save_pred_every == 0 and step > args.ckpt:
            tot_loss_float, seg_loss_float, reg_loss_float, images, labels, summary, mean_iou_float, _, _, lr_float = sess.run(
                [
                    total_loss, seg_loss, reg_loss, image_batch, label_batch,
                    summary_op, mean_iou, update_mean_iou, train_op,
                    learning_rate
                ],
                feed_dict=feed_dict)
            summary_writer.add_summary(summary, step)
            save(saver, sess, args.snapshot_dir, step)
            sys.stdout.write(
                'step {:d}, tot_loss = {:.6f}, seg_loss = {:.6f}, reg_loss = {:.6f}, mean_iou: {:.6f}, lr: {:.6f}({:.3f} sec/step)\n'
                .format(step, tot_loss_float, seg_loss_float, reg_loss_float,
                        mean_iou_float, lr_float, duration))
            sys.stdout.flush()
        else:
            tot_loss_float, seg_loss_float, reg_loss_float, mean_iou_float, _, _, lr_float = sess.run(
                [
                    total_loss, seg_loss, reg_loss, mean_iou, update_mean_iou,
                    train_op, learning_rate
                ],
                feed_dict=feed_dict)
        duration = time.time() - start_time
        sys.stdout.write(
            'step {:d}, tot_loss = {:.6f}, seg_loss = {:.6f}, reg_loss = {:.6f}, mean_iou: {:.6f}, lr: {:.6f}({:.3f} sec/step)\n'
            .format(step, tot_loss_float, seg_loss_float, reg_loss_float,
                    mean_iou_float, lr_float, duration))
        sys.stdout.flush()

        if coord.should_stop():
            coord.request_stop()
            coord.join(threads)
Exemple #8
0
def main():
    """Create the model and start the training."""
    # h = args.input_size
    # w = args.input_size
    #input_size = (h, w)

    tf.set_random_seed(args.random_seed)

    # Create queue coordinator.
    coord = tf.train.Coordinator()

    image_batch, label_batch = read_data(is_training=args.is_training,
                                         split_name=args.split_name)
    cropped_image = tf.summary.image('cropped_image', image_batch)
    coppped_label = tf.summary.image('cropped_label', label_batch * 255)
    # Create network.
    net, end_points = deeplabv3(
        image_batch,
        num_classes=args.num_classes,
        depth=args.num_layers,
        is_training=args.is_training,
    )
    # For a small batch size, it is better to keep
    # the statistics of the BN layers (running means and variances)
    # frozen, and to not update the values provided by the pre-trained model.
    # If is_training=True, the statistics will be updated during the training.
    # Note that is_training=False still updates BN parameters gamma (scale)
    # and beta (offset)
    # if they are presented in var_list of the optimizer definition.

    # Predictions.
    raw_output = end_points['resnet_v1_{}/logits'.format(args.num_layers)]
    # Which variables to load. Running means and variances are not trainable,
    # thus all_variables() should be restored.
    if args.imagenet is not None and args.ckpt == 0:
        restore_var = [
            v for v in tf.global_variables()
            if ('aspp' not in v.name) and ('img_pool' not in v.name) and (
                'fusion' not in v.name) and ('block5' not in v.name) and (
                    'block6' not in v.name) and ('block7' not in v.name) and (
                        'logits' not in v.name) and ('short_cut' not in v.name)
        ]
    else:
        restore_var = [v for v in tf.global_variables()]

    if args.freeze_bn:
        all_trainable = [
            v for v in tf.trainable_variables()
            if 'beta' not in v.name and 'gamma' not in v.name
        ]
    else:
        all_trainable = [v for v in tf.trainable_variables()]
    conv_trainable = [v for v in all_trainable]

    # Upsample the logits instead of donwsample the ground truth
    # raw_output_up = tf.image.resize_bilinear(raw_output, [h, w])

    # Predictions: ignoring all predictions with labels greater or equal than
    # n_classes
    label_proc = tf.squeeze(label_batch)
    mask = label_proc <= args.num_classes
    seg_logits = tf.boolean_mask(raw_output, mask)
    seg_gt = tf.boolean_mask(label_proc, mask)
    seg_gt = tf.cast(seg_gt, tf.int32)

    # Pixel-wise softmax loss.
    loss = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=seg_logits,
                                                          labels=seg_gt)
    seg_loss = tf.reduce_mean(loss)
    seg_loss_sum = tf.summary.scalar('loss/seg', seg_loss)
    reg_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
    reg_loss = tf.add_n(reg_losses)
    reg_loss_sum = tf.summary.scalar('loss/reg', reg_loss)
    tot_loss = seg_loss + 2 * reg_loss
    tot_loss_sum = tf.summary.scalar('loss/tot', tot_loss)
    # 通过argmax来获取预测结果
    seg_pred = tf.argmax(seg_logits, axis=1)
    train_mean_iou, train_update_mean_iou = streaming_mean_iou(
        seg_pred, seg_gt, args.num_classes, name="train_iou")
    train_iou_sum = tf.summary.scalar('accuracy/train_mean_iou',
                                      train_mean_iou)
    train_initializer = tf.variables_initializer(var_list=tf.get_collection(
        tf.GraphKeys.LOCAL_VARIABLES, scope="train_iou"))

    # Define loss and optimisation parameters.
    base_lr = tf.constant(args.learning_rate)
    step_ph = tf.placeholder(dtype=tf.float32, shape=())
    learning_rate = tf.scalar_mul(
        base_lr, tf.pow((1 - step_ph / args.num_steps), args.power))
    # learning_rate = base_lr
    lr_sum = tf.summary.scalar('params/learning_rate', learning_rate)

    train_sum_op = tf.summary.merge([
        seg_loss_sum, reg_loss_sum, tot_loss_sum, train_iou_sum, lr_sum,
        cropped_image, coppped_label
    ])

    image_batch_val, label_batch_val = read_data(is_training=False,
                                                 split_name='val')
    _, end_points_val = deeplabv3(
        image_batch_val,
        num_classes=args.num_classes,
        depth=args.num_layers,
        reuse=True,
        is_training=False,
    )
    raw_output_val = end_points_val['resnet_v1_{}/logits'.format(
        args.num_layers)]
    nh, nw = tf.shape(image_batch_val)[1], tf.shape(image_batch_val)[2]

    seg_logits_val = tf.image.resize_bilinear(raw_output_val, [nh, nw])
    seg_pred_val = tf.argmax(seg_logits_val, axis=3)
    seg_pred_val = tf.expand_dims(seg_pred_val, 3)
    seg_pred_val = tf.reshape(seg_pred_val, [
        -1,
    ])

    seg_gt_val = tf.cast(label_batch_val, tf.int32)
    seg_gt_val = tf.reshape(seg_gt_val, [
        -1,
    ])
    mask_val = seg_gt_val <= args.num_classes - 1

    seg_pred_val = tf.boolean_mask(seg_pred_val, mask_val)
    seg_gt_val = tf.boolean_mask(seg_gt_val, mask_val)

    val_mean_iou, val_update_mean_iou = streaming_mean_iou(
        seg_pred_val, seg_gt_val, num_classes=args.num_classes, name="val_iou")
    val_iou_sum = tf.summary.scalar('accuracy/val_mean_iou', val_mean_iou)
    val_initializer = tf.variables_initializer(var_list=tf.get_collection(
        tf.GraphKeys.LOCAL_VARIABLES, scope="val_iou"))
    test_sum_op = tf.summary.merge([val_iou_sum])

    global_step = tf.train.get_or_create_global_step()

    opt = tf.train.MomentumOptimizer(learning_rate, args.momentum)

    # grads_conv = tf.gradients(tot_loss, conv_trainable)
    # train_op = opt.apply_gradients(zip(grads_conv, conv_trainable))
    train_op = slim.learning.create_train_op(tot_loss,
                                             opt,
                                             global_step=global_step,
                                             variables_to_train=conv_trainable,
                                             summarize_gradients=True)

    # Set up tf session and initialize variables.
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    sess = tf.Session(config=config)

    sess.run(tf.global_variables_initializer())
    sess.run(tf.local_variables_initializer())

    # Saver for storing checkpoints of the model.
    saver = tf.train.Saver(var_list=tf.global_variables(), max_to_keep=50)

    # Load variables if the checkpoint is provided.
    if args.ckpt > 0 or args.restore_from is not None or args.imagenet is not None:
        loader = tf.train.Saver(var_list=restore_var)
        load(loader, sess, args.snapshot_dir)

    # Start queue threads.
    threads = tf.train.start_queue_runners(coord=coord, sess=sess)

    # tf.get_default_graph().finalize()
    summary_writer = tf.summary.FileWriter(args.snapshot_dir, sess.graph)

    # Iterate over training steps.
    for step in range(args.ckpt, args.num_steps + 1):
        start_time = time.time()
        feed_dict = {step_ph: step}
        tot_loss_float, seg_loss_float, reg_loss_float, _, lr_float, _, train_summary = sess.run(
            [
                tot_loss, seg_loss, reg_loss, train_op, learning_rate,
                train_update_mean_iou, train_sum_op
            ],
            feed_dict=feed_dict)
        train_mean_iou_float = sess.run(train_mean_iou)
        summary_writer.add_summary(train_summary, step)
        # batch_prediction = sess.run(raw_output_up)
        # batch_image = sess.run(image_batch)
        # with open('./datasets/IDImage/{}.txt'.format(args.split_name), 'r') as f:
        #     lines = f.readlines()
        #     for i in range(args.batch_size):
        #         pre_tosave = batch_prediction[i,:,:,:]
        #         pre_tosave = np.argmax(pre_tosave, axis=2)
        #         img_tosave = batch_image[i,:,:,:]
        #         img_tosave = np.squeeze(img_tosave)
        #         img_tosave = img_tosave[:,:,[2,1,0]]
        #
        #
        #         save_name = lines[(step-args.ckpt)*args.batch_size + i].split('/')[-1][:-1]
        #
        #         img_save_path = os.path.join('./datasets/IDImage/test/JPGImage',save_name)
        #         pre_save_path = os.path.join('./datasets/IDImage/test/Prediction',save_name)
        #         pyplot.imsave(img_save_path, img_tosave)
        #         pyplot.imsave(pre_save_path,pre_tosave)
        duration = time.time() - start_time
        sys.stdout.write('step {:d}, tot_loss = {:.6f}, seg_loss = {:.6f}, ' \
            'reg_loss = {:.6f}, mean_iou = {:.6f}, lr: {:.6f}({:.3f}' \
            'sec/step), memory usage: {}\n'.format(step, tot_loss_float, seg_loss_float,
             reg_loss_float, train_mean_iou_float, lr_float, duration,memory_usage_psutil())
            )
        sys.stdout.flush()

        if step % args.save_pred_every == 0 and step > args.ckpt:
            sess.run(val_initializer)
            val_mean_iou_total = 0

            for val_step in range(NUM_VAL):
                _, test_summary, val_mean_iou_single = sess.run(
                    [val_update_mean_iou, test_sum_op, val_mean_iou],
                    feed_dict=feed_dict)
                val_mean_iou_total += val_mean_iou_single

            test_mean_iou = val_mean_iou_total / (NUM_VAL - 1)
            print('=============================================')
            print(test_mean_iou)
            print('=============================================')
            if not os.path.exists('./datasets/IDImage/logs.txt'):
                os.system("touch ./datasets/IDImage/logs.txt")
            with open('./datasets/IDImage/logs.txt', 'a+') as f:
                f.write('{}steps: {}'.format(step, test_mean_iou) + '\n')
            # val_mean_iou_mean = tf.summary.scalar('val/mean_iou', val_mean_iou_float)
            # val_sum_op = tf.summary.merge([val_mean_iou_mean])
            # val_summary = sess.run(val_sum_op)
            # summary_writer.add_summary(val_summary, step)
            summary_writer.add_summary(test_summary, step)
            val_mean_iou_float = sess.run(val_mean_iou)

            save(saver, sess, args.snapshot_dir, step)
            sys.stdout.write('step {:d}, train_mean_iou: {:.6f}, ' \
                'val_mean_iou: {:.6f}\n'.format(step, train_mean_iou_float,
                val_mean_iou_float))
            sys.stdout.flush()
            sess.run(train_initializer)

        if coord.should_stop():
            coord.request_stop()
            coord.join(threads)