def _calculate_num_points_in_gt(data_path, infos, relative_path, remove_outside=True, num_features=4): for info in infos: if relative_path: v_path = str(pathlib.Path(data_path) / info["velodyne_path"]) else: v_path = info["velodyne_path"] points_v = np.fromfile( v_path, dtype=np.float32, count=-1).reshape([-1, num_features]) rect = info['calib/R0_rect'] Trv2c = info['calib/Tr_velo_to_cam'] P2 = info['calib/P2'] if remove_outside: points_v = box_np_ops.remove_outside_points(points_v, rect, Trv2c, P2, info["img_shape"]) # points_v = points_v[points_v[:, 0] > 0] annos = info['annos'] num_obj = len([n for n in annos['name'] if n != 'DontCare']) # annos = kitti.filter_kitti_anno(annos, ['DontCare']) dims = annos['dimensions'][:num_obj] loc = annos['location'][:num_obj] rots = annos['rotation_y'][:num_obj] gt_boxes_camera = np.concatenate( [loc, dims, rots[..., np.newaxis]], axis=1) gt_boxes_lidar = box_np_ops.box_camera_to_lidar( gt_boxes_camera, rect, Trv2c) indices = box_np_ops.points_in_rbbox(points_v[:, :3], gt_boxes_lidar) num_points_in_gt = indices.sum(0) num_ignored = len(annos['dimensions']) - num_obj num_points_in_gt = np.concatenate( [num_points_in_gt, -np.ones([num_ignored])]) annos["num_points_in_gt"] = num_points_in_gt.astype(np.int32)
def _create_reduced_point_cloud(data_path, info_path, save_path=None, back=False): with open(info_path, 'rb') as f: kitti_infos = pickle.load(f) for info in prog_bar(kitti_infos): v_path = info['velodyne_path'] v_path = pathlib.Path(data_path) / v_path points_v = np.fromfile( str(v_path), dtype=np.float32, count=-1).reshape([-1, 4]) rect = info['calib/R0_rect'] P2 = info['calib/P2'] Trv2c = info['calib/Tr_velo_to_cam'] # first remove z < 0 points # keep = points_v[:, -1] > 0 # points_v = points_v[keep] # then remove outside. if back: points_v[:, 0] = -points_v[:, 0] points_v = box_np_ops.remove_outside_points(points_v, rect, Trv2c, P2, info["img_shape"]) if save_path is None: save_filename = v_path.parent.parent / (v_path.parent.stem + "_reduced") / v_path.name # save_filename = str(v_path) + '_reduced' if back: save_filename += "_back" else: save_filename = str(pathlib.Path(save_path) / v_path.name) if back: save_filename += "_back" with open(save_filename, 'w') as f: points_v.tofile(f)
def prep_pointcloud(input_dict, root_path, voxel_generator, target_assigner, db_sampler=None, max_voxels=20000, class_names=['Car'], remove_outside_points=False, training=True, create_targets=True, shuffle_points=False, reduce_valid_area=False, remove_unknown=False, gt_rotation_noise=[-np.pi / 3, np.pi / 3], gt_loc_noise_std=[1.0, 1.0, 1.0], global_rotation_noise=[-np.pi / 4, np.pi / 4], global_scaling_noise=[0.95, 1.05], global_loc_noise_std=(0.2, 0.2, 0.2), global_random_rot_range=[0.78, 2.35], generate_bev=False, without_reflectivity=False, num_point_features=4, anchor_area_threshold=1, gt_points_drop=0.0, gt_drop_max_keep=10, remove_points_after_sample=True, anchor_cache=None, remove_environment=False, random_crop=False, reference_detections=None, add_rgb_to_points=False, lidar_input=False, unlabeled_db_sampler=None, out_size_factor=2, min_gt_point_dict=None, bev_only=False, use_group_id=False, out_dtype=np.float32): """convert point cloud to voxels, create targets if ground truths exists. """ points = input_dict["points"] if training: gt_boxes = input_dict["gt_boxes"] gt_names = input_dict["gt_names"] difficulty = input_dict["difficulty"] group_ids = None if use_group_id and "group_ids" in input_dict: group_ids = input_dict["group_ids"] rect = input_dict["rect"] Trv2c = input_dict["Trv2c"] P2 = input_dict["P2"] unlabeled_training = unlabeled_db_sampler is not None image_idx = input_dict["image_idx"] if reference_detections is not None: C, R, T = box_np_ops.projection_matrix_to_CRT_kitti(P2) frustums = box_np_ops.get_frustum_v2(reference_detections, C) frustums -= T # frustums = np.linalg.inv(R) @ frustums.T frustums = np.einsum('ij, akj->aki', np.linalg.inv(R), frustums) frustums = box_np_ops.camera_to_lidar(frustums, rect, Trv2c) surfaces = box_np_ops.corner_to_surfaces_3d_jit(frustums) masks = points_in_convex_polygon_3d_jit(points, surfaces) points = points[masks.any(-1)] if remove_outside_points and not lidar_input: image_shape = input_dict["image_shape"] points = box_np_ops.remove_outside_points(points, rect, Trv2c, P2, image_shape) if remove_environment is True and training: selected = kitti.keep_arrays_by_name(gt_names, class_names) gt_boxes = gt_boxes[selected] gt_names = gt_names[selected] difficulty = difficulty[selected] if group_ids is not None: group_ids = group_ids[selected] points = prep.remove_points_outside_boxes(points, gt_boxes) if training: # print(gt_names) selected = kitti.drop_arrays_by_name(gt_names, ["DontCare"]) gt_boxes = gt_boxes[selected] gt_names = gt_names[selected] difficulty = difficulty[selected] if group_ids is not None: group_ids = group_ids[selected] gt_boxes = box_np_ops.box_camera_to_lidar(gt_boxes, rect, Trv2c) if remove_unknown: remove_mask = difficulty == -1 """ gt_boxes_remove = gt_boxes[remove_mask] gt_boxes_remove[:, 3:6] += 0.25 points = prep.remove_points_in_boxes(points, gt_boxes_remove) """ keep_mask = np.logical_not(remove_mask) gt_boxes = gt_boxes[keep_mask] gt_names = gt_names[keep_mask] difficulty = difficulty[keep_mask] if group_ids is not None: group_ids = group_ids[keep_mask] gt_boxes_mask = np.array([n in class_names for n in gt_names], dtype=np.bool_) if db_sampler is not None: sampled_dict = db_sampler.sample_all(root_path, gt_boxes, gt_names, num_point_features, random_crop, gt_group_ids=group_ids, rect=rect, Trv2c=Trv2c, P2=P2) if sampled_dict is not None: sampled_gt_names = sampled_dict["gt_names"] sampled_gt_boxes = sampled_dict["gt_boxes"] sampled_points = sampled_dict["points"] sampled_gt_masks = sampled_dict["gt_masks"] # gt_names = gt_names[gt_boxes_mask].tolist() gt_names = np.concatenate([gt_names, sampled_gt_names], axis=0) # gt_names += [s["name"] for s in sampled] gt_boxes = np.concatenate([gt_boxes, sampled_gt_boxes]) gt_boxes_mask = np.concatenate( [gt_boxes_mask, sampled_gt_masks], axis=0) if group_ids is not None: sampled_group_ids = sampled_dict["group_ids"] group_ids = np.concatenate([group_ids, sampled_group_ids]) if remove_points_after_sample: points = prep.remove_points_in_boxes( points, sampled_gt_boxes) points = np.concatenate([sampled_points, points], axis=0) # unlabeled_mask = np.zeros((gt_boxes.shape[0], ), dtype=np.bool_) if without_reflectivity: used_point_axes = list(range(num_point_features)) used_point_axes.pop(3) points = points[:, used_point_axes] pc_range = voxel_generator.point_cloud_range if bev_only: # set z and h to limits gt_boxes[:, 2] = pc_range[2] gt_boxes[:, 5] = pc_range[5] - pc_range[2] prep.noise_per_object_v3_( gt_boxes, points, gt_boxes_mask, rotation_perturb=gt_rotation_noise, center_noise_std=gt_loc_noise_std, global_random_rot_range=global_random_rot_range, group_ids=group_ids, num_try=100) # should remove unrelated objects after noise per object gt_boxes = gt_boxes[gt_boxes_mask] gt_names = gt_names[gt_boxes_mask] if group_ids is not None: group_ids = group_ids[gt_boxes_mask] gt_classes = np.array([class_names.index(n) + 1 for n in gt_names], dtype=np.int32) gt_boxes, points = prep.random_flip(gt_boxes, points) gt_boxes, points = prep.global_rotation(gt_boxes, points, rotation=global_rotation_noise) gt_boxes, points = prep.global_scaling_v2(gt_boxes, points, *global_scaling_noise) # Global translation gt_boxes, points = prep.global_translate(gt_boxes, points, global_loc_noise_std) bv_range = voxel_generator.point_cloud_range[[0, 1, 3, 4]] mask = prep.filter_gt_box_outside_range(gt_boxes, bv_range) gt_boxes = gt_boxes[mask] gt_classes = gt_classes[mask] if group_ids is not None: group_ids = group_ids[mask] # limit rad to [-pi, pi] gt_boxes[:, 6] = box_np_ops.limit_period(gt_boxes[:, 6], offset=0.5, period=2 * np.pi) if shuffle_points: # shuffle is a little slow. np.random.shuffle(points) # [0, -40, -3, 70.4, 40, 1] voxel_size = voxel_generator.voxel_size pc_range = voxel_generator.point_cloud_range grid_size = voxel_generator.grid_size # [352, 400] voxels, coordinates, num_points = voxel_generator.generate( points, max_voxels) #print('coordinates',coordinates.shape) example = { 'voxels': voxels, 'num_points': num_points, 'coordinates': coordinates, "num_voxels": np.array([voxels.shape[0]], dtype=np.int64) } example.update({ 'rect': rect, 'Trv2c': Trv2c, 'P2': P2, }) # if not lidar_input: feature_map_size = grid_size[:2] // out_size_factor feature_map_size = [*feature_map_size, 1][::-1] if anchor_cache is not None: anchors = anchor_cache["anchors"] anchors_bv = anchor_cache["anchors_bv"] matched_thresholds = anchor_cache["matched_thresholds"] unmatched_thresholds = anchor_cache["unmatched_thresholds"] else: ret = target_assigner.generate_anchors(feature_map_size) anchors = ret["anchors"] anchors = anchors.reshape([-1, 7]) matched_thresholds = ret["matched_thresholds"] unmatched_thresholds = ret["unmatched_thresholds"] anchors_bv = box_np_ops.rbbox2d_to_near_bbox(anchors[:, [0, 1, 3, 4, 6]]) example["anchors"] = anchors # print("debug", anchors.shape, matched_thresholds.shape) # anchors_bv = anchors_bv.reshape([-1, 4]) anchors_mask = None if anchor_area_threshold >= 0: coors = coordinates dense_voxel_map = box_np_ops.sparse_sum_for_anchors_mask( coors, tuple(grid_size[::-1][1:])) dense_voxel_map = dense_voxel_map.cumsum(0) dense_voxel_map = dense_voxel_map.cumsum(1) anchors_area = box_np_ops.fused_get_anchors_area( dense_voxel_map, anchors_bv, voxel_size, pc_range, grid_size) anchors_mask = anchors_area > anchor_area_threshold # example['anchors_mask'] = anchors_mask.astype(np.uint8) example['anchors_mask'] = anchors_mask if generate_bev: bev_vxsize = voxel_size.copy() bev_vxsize[:2] /= 2 bev_vxsize[2] *= 2 bev_map = points_to_bev(points, bev_vxsize, pc_range, without_reflectivity) example["bev_map"] = bev_map if not training: return example if create_targets: targets_dict = target_assigner.assign( anchors, gt_boxes, anchors_mask, gt_classes=gt_classes, matched_thresholds=matched_thresholds, unmatched_thresholds=unmatched_thresholds) example.update({ 'labels': targets_dict['labels'], 'reg_targets': targets_dict['bbox_targets'], 'reg_weights': targets_dict['bbox_outside_weights'], }) return example
def create_groundtruth_database(data_path, info_path=None, used_classes=None, database_save_path=None, db_info_save_path=None, relative_path=True, lidar_only=False, bev_only=False, coors_range=None): root_path = pathlib.Path(data_path) if info_path is None: info_path = root_path / 'kitti_infos_train.pkl' if database_save_path is None: database_save_path = root_path / 'gt_database' else: database_save_path = pathlib.Path(database_save_path) if db_info_save_path is None: db_info_save_path = root_path / "kitti_dbinfos_train.pkl" database_save_path.mkdir(parents=True, exist_ok=True) with open(info_path, 'rb') as f: kitti_infos = pickle.load(f) all_db_infos = {} if used_classes is None: used_classes = list(kitti.get_classes()) used_classes.pop(used_classes.index('DontCare')) for name in used_classes: all_db_infos[name] = [] group_counter = 0 for info in prog_bar(kitti_infos): velodyne_path = info['velodyne_path'] if relative_path: # velodyne_path = str(root_path / velodyne_path) + "_reduced" velodyne_path = str(root_path / velodyne_path) num_features = 4 if 'pointcloud_num_features' in info: num_features = info['pointcloud_num_features'] points = np.fromfile( velodyne_path, dtype=np.float32, count=-1).reshape([-1, num_features]) image_idx = info["image_idx"] rect = info['calib/R0_rect'] P2 = info['calib/P2'] Trv2c = info['calib/Tr_velo_to_cam'] if not lidar_only: points = box_np_ops.remove_outside_points(points, rect, Trv2c, P2, info["img_shape"]) annos = info["annos"] names = annos["name"] bboxes = annos["bbox"] difficulty = annos["difficulty"] gt_idxes = annos["index"] num_obj = np.sum(annos["index"] >= 0) rbbox_cam = kitti.anno_to_rbboxes(annos)[:num_obj] rbbox_lidar = box_np_ops.box_camera_to_lidar(rbbox_cam, rect, Trv2c) if bev_only: # set z and h to limits assert coors_range is not None rbbox_lidar[:, 2] = coors_range[2] rbbox_lidar[:, 5] = coors_range[5] - coors_range[2] group_dict = {} group_ids = np.full([bboxes.shape[0]], -1, dtype=np.int64) if "group_ids" in annos: group_ids = annos["group_ids"] else: group_ids = np.arange(bboxes.shape[0], dtype=np.int64) point_indices = box_np_ops.points_in_rbbox(points, rbbox_lidar) for i in range(num_obj): filename = f"{image_idx}_{names[i]}_{gt_idxes[i]}.bin" filepath = database_save_path / filename gt_points = points[point_indices[:, i]] gt_points[:, :3] -= rbbox_lidar[i, :3] with open(filepath, 'w') as f: gt_points.tofile(f) if names[i] in used_classes: if relative_path: db_path = str(database_save_path.stem + "/" + filename) else: db_path = str(filepath) db_info = { "name": names[i], "path": db_path, "image_idx": image_idx, "gt_idx": gt_idxes[i], "box3d_lidar": rbbox_lidar[i], "num_points_in_gt": gt_points.shape[0], "difficulty": difficulty[i], # "group_id": -1, # "bbox": bboxes[i], } local_group_id = group_ids[i] # if local_group_id >= 0: if local_group_id not in group_dict: group_dict[local_group_id] = group_counter group_counter += 1 db_info["group_id"] = group_dict[local_group_id] if "score" in annos: db_info["score"] = annos["score"][i] all_db_infos[names[i]].append(db_info) for k, v in all_db_infos.items(): print(f"load {len(v)} {k} database infos") with open(db_info_save_path, 'wb') as f: pickle.dump(all_db_infos, f)