def main():
    _simulations = load.structured()
    _simulations = filtering.by_time_points_amount(_simulations, TIME_POINTS)
    _simulations = filtering.by_categories(
        _simulations,
        _is_single_cell=False,
        _is_heterogeneity=True,
        _is_low_connectivity=False,
        _is_causality=False,
        _is_dominant_passive=False,
        _is_fibrin=False
    )
    _simulations = filtering.by_pair_distance(_simulations, _distance=PAIR_DISTANCE)
    _simulations = filtering.by_heterogeneity(_simulations, _std=STD)
    print('Total simulations:', len(_simulations))

    _fiber_densities = compute_fiber_densities(_simulations)

    _window_distances_communicating = [[] for _i in OFFSETS_X]
    _window_distances_non_communicating = [[] for _i in OFFSETS_X]
    # window distances loop
    for _window_distance_index, _window_distance in enumerate(OFFSETS_X):
        print('Window distance:', _window_distance)

        # communicating loop
        for _simulation in tqdm(_simulations, desc='Communicating loop'):
            _left_cell_fiber_densities = _fiber_densities[(_simulation, _window_distance, 'left_cell')]
            _right_cell_fiber_densities = _fiber_densities[(_simulation, _window_distance, 'right_cell')]
            _correlation = compute_lib.correlation(
                compute_lib.derivative(_left_cell_fiber_densities, _n=DERIVATIVE),
                compute_lib.derivative(_right_cell_fiber_densities, _n=DERIVATIVE)
            )
            _window_distances_communicating[_window_distance_index].append(_correlation)

        # non-communicating loop
        _simulations_indices = range(len(_simulations))
        for _simulation_1_index in tqdm(_simulations_indices, desc='Non-communicating pairs loop'):
            _simulation_1 = _simulations[_simulation_1_index]
            for _simulation_2_index in _simulations_indices[_simulation_1_index + 1:]:
                _simulation_2 = _simulations[_simulation_2_index]
                for _simulation_1_cell_id, _simulation_2_cell_id in product(['left_cell', 'right_cell'],
                                                                            ['left_cell', 'right_cell']):
                    _simulation_1_fiber_densities = \
                        _fiber_densities[(_simulation_1, _window_distance, _simulation_1_cell_id)]
                    _simulation_2_fiber_densities = \
                        _fiber_densities[(_simulation_2, _window_distance, _simulation_2_cell_id)]
                    _correlation = compute_lib.correlation(
                        compute_lib.derivative(_simulation_1_fiber_densities, _n=DERIVATIVE),
                        compute_lib.derivative(_simulation_2_fiber_densities, _n=DERIVATIVE)
                    )
                    _window_distances_non_communicating[_window_distance_index].append(_correlation)

        # rank sums
        print('Wilcoxon rank-sum tests between communicating and non-communicating:',
              ranksums(_window_distances_communicating[_window_distance_index],
                       _window_distances_non_communicating[_window_distance_index]))

    # plot
    _data = []
    _colors_array = config.colors(2)
    for _communicating, _communicating_text, _pair_distances, _color in \
            zip([True, False], ['Communicating', 'Non-communicating'],
                [_window_distances_communicating, _window_distances_non_communicating],
                _colors_array):
        _y = []
        _x = []
        for _window_distance_index, _window_distance in enumerate(OFFSETS_X):
            _y += _pair_distances[_window_distance_index]
            _x += [_window_distance for _i in _pair_distances[_window_distance_index]]
        _data.append(
            go.Box(
                y=_y,
                x=_x,
                name=_communicating_text,
                boxpoints='all' if _communicating else False,
                jitter=1,
                pointpos=0,
                line={
                    'width': 1
                },
                fillcolor='white',
                marker={
                    'size': 10,
                    'color': _color
                },
                opacity=0.7
            )
        )

    _fig = go.Figure(
        data=_data,
        layout={
            'xaxis': {
                'title': 'Window distance (cell diameter)',
                'zeroline': False,
                'tickmode': 'array',
                'tickvals': OFFSETS_X,
                'type': 'category'
            },
            'yaxis': {
                'title': 'Correlation',
                'range': [-1, 1],
                'zeroline': False,
                'tickmode': 'array',
                'tickvals': [-1, -0.5, 0, 0.5, 1]
            },
            'boxmode': 'group',
            'legend': {
                'xanchor': 'right',
                'yanchor': 'top',
                'bordercolor': 'black',
                'borderwidth': 2
            }
        }
    )

    save.to_html(
        _fig=_fig,
        _path=os.path.join(paths.PLOTS, save.get_module_name()),
        _filename='plot'
    )
def main(_type='alpha',
         _low_connectivity=False,
         _plots=None,
         _plot_types=None):
    if _plots is None:
        _plots = ['same', 'different']
    if _plot_types is None:
        _plot_types = ['stacked_bar', 'box', 'bar']

    _same_arrays = []
    _different_arrays = []
    _same_highest = []
    _different_highest = []

    if _type == 'alpha':
        _alphas = ALPHAS
        _betas = [BETA] * len(ALPHAS)
        _names = _alphas
    elif _type == 'beta':
        _alphas = [ALPHA] * len(BETAS)
        _betas = BETAS
        _names = _betas
    else:
        raise Exception(
            'No such type. Only \'alpha\' or \'beta\' are acceptable.')

    for _alpha, _beta in zip(_alphas, _betas):
        print('Alpha:', _alpha, 'beta:', _beta)
        _, _same_time_lags_arrays, _different_time_lags_arrays, _same_time_lags_highest, \
            _different_time_lags_highest = same_inner_correlation_vs_different_inner_correlation_cross_correlation.compute_fiber_densities(
                _alpha=_alpha, _beta=_beta, _low_connectivity=_low_connectivity)

        _same_arrays.append(_same_time_lags_arrays[TIME_LAG_INDEX])
        _different_arrays.append(_different_time_lags_arrays[TIME_LAG_INDEX])
        _same_highest.append(_same_time_lags_highest)
        _different_highest.append(_different_time_lags_highest)

    if _plots is not None:

        # stacked bar plot
        if 'stacked_bar' in _plot_types:
            for _name, _sums in zip(['same', 'different'],
                                    [_same_highest, _different_highest]):
                if _name in _plots:

                    _y_arrays = [[], [], []]
                    for _type_sums in _sums:
                        _left_wins, _none_wins, _right_wins = 0, 0, 0
                        for _time_lag, _type_sum in zip(
                                same_inner_correlation_vs_different_inner_correlation_cross_correlation
                                .TIME_LAGS, _type_sums):
                            if _time_lag > 0:
                                _left_wins += _type_sum
                            elif _time_lag < 0:
                                _right_wins += _type_sum
                            else:
                                _none_wins += _type_sum
                        _total = sum(_type_sums)
                        _y_arrays[0].append(_left_wins / _total)
                        _y_arrays[1].append(_none_wins / _total)
                        _y_arrays[2].append(_right_wins / _total)

                    _colors_array = config.colors(3)
                    _fig = go.Figure(data=[
                        go.Bar(x=_names,
                               y=_y_array,
                               name=_name,
                               marker={'color': _color}) for _name, _y_array,
                        _color in zip(['Leader', 'None', 'Follower'],
                                      _y_arrays, _colors_array)
                    ],
                                     layout={
                                         'xaxis': {
                                             'title': _type.capitalize(),
                                             'zeroline': False,
                                             'tickmode': 'array',
                                             'tickvals': _names,
                                             'type': 'category'
                                         },
                                         'yaxis': {
                                             'title':
                                             'Highest correlation fraction',
                                             'range': [0, 1.1],
                                             'zeroline': False,
                                             'tickmode': 'array',
                                             'tickvals': [0, 0.5, 1]
                                         },
                                         'barmode': 'stack',
                                         'legend': {
                                             'xanchor': 'right',
                                             'yanchor': 'top',
                                             'bordercolor': 'black',
                                             'borderwidth': 2
                                         },
                                     })

                    save.to_html(_fig=_fig,
                                 _path=os.path.join(paths.PLOTS,
                                                    save.get_module_name()),
                                 _filename='plot_stacked_bar_' + _type +
                                 '_low_con_' + str(_low_connectivity) + '_' +
                                 _name)

        # box plot
        if 'box' in _plot_types:
            for _name, _arrays in zip(['same', 'different'],
                                      [_same_arrays, _different_arrays]):
                if _name in _plots:
                    _fig = go.Figure(
                        data=[
                            go.Box(y=_y,
                                   name=_name,
                                   boxpoints=False,
                                   line={'width': 1},
                                   marker={
                                       'size': 10,
                                       'color': '#2e82bf'
                                   },
                                   showlegend=False)
                            for _y, _name in zip(_arrays, _names)
                        ],
                        layout={
                            'xaxis': {
                                'title': _type.capitalize(),
                                'zeroline': False,
                                'tickmode': 'array',
                                'tickvals': _names,
                                'type': 'category'
                            },
                            'yaxis': {
                                'title':
                                'Inner correlation' if _name == 'same' else
                                'Different network correlation',
                                'range': [-1, 1.1],
                                'zeroline':
                                False,
                                'tickmode':
                                'array',
                                'tickvals': [-1, -0.5, 0, 0.5, 1]
                            }
                        })

                    save.to_html(_fig=_fig,
                                 _path=os.path.join(paths.PLOTS,
                                                    save.get_module_name()),
                                 _filename='plot_box_' + _type + '_low_con_' +
                                 str(_low_connectivity) + '_' + _name)

        # bar plot
        if 'bar' in _plot_types:
            for _name, _sums in zip(['same', 'different'],
                                    [_same_highest, _different_highest]):
                if _name in _plots:
                    _fig = go.Figure(data=go.Bar(
                        x=_names,
                        y=[
                            _type_sums[TIME_LAG_INDEX] / sum(_type_sums)
                            for _type_sums in _sums
                        ],
                        marker={'color': '#2e82bf'}),
                                     layout={
                                         'xaxis': {
                                             'title': _type.capitalize(),
                                             'zeroline': False,
                                             'tickmode': 'array',
                                             'tickvals': _names,
                                             'type': 'category'
                                         },
                                         'yaxis': {
                                             'title': 'Lag ' + str(TIME_LAG) +
                                             ' highest correlation fraction',
                                             'range': [0, 1.1],
                                             'zeroline': False,
                                             'tickmode': 'array',
                                             'tickvals': [0, 0.5, 1]
                                         }
                                     })

                    save.to_html(_fig=_fig,
                                 _path=os.path.join(paths.PLOTS,
                                                    save.get_module_name()),
                                 _filename='plot_bar_' + _type + '_low_con_' +
                                 str(_low_connectivity) + '_' + _name)
Exemple #3
0
def main():
    _simulations = load.structured()
    _simulations = filtering.by_time_points_amount(
        _simulations, _time_points=SIMULATIONS_TIME_POINTS)
    _simulations = filtering.by_categories(_simulations,
                                           _is_single_cell=False,
                                           _is_heterogeneity=True,
                                           _is_low_connectivity=False,
                                           _is_causality=False,
                                           _is_dominant_passive=False,
                                           _is_fibrin=False)
    _simulations = filtering.by_heterogeneity(_simulations, _std=STD)
    _simulations = filtering.by_pair_distances(_simulations,
                                               _distances=PAIR_DISTANCE)
    print('Total simulations:', len(_simulations))

    _fiber_densities = compute_fiber_densities(_simulations)

    _x_arrays = [[] for _i in PAIR_DISTANCE]
    _y_arrays = [[] for _i in PAIR_DISTANCE]
    for _distance_index, _distance in enumerate(PAIR_DISTANCE):
        _distance_simulations = filtering.by_pair_distance(_simulations,
                                                           _distance=_distance)
        print('Distance:', _distance, 'Total simulations:',
              len(_distance_simulations))
        for _simulation in tqdm(_distance_simulations,
                                desc='Simulations loop'):
            for _direction in ['inside', 'outside']:
                _left_cell_fiber_densities = _fiber_densities[(_simulation,
                                                               'left_cell',
                                                               _direction)]
                _right_cell_fiber_densities = _fiber_densities[(_simulation,
                                                                'right_cell',
                                                                _direction)]
                _correlation = compute_lib.correlation(
                    compute_lib.derivative(_left_cell_fiber_densities,
                                           _n=DERIVATIVE),
                    compute_lib.derivative(_right_cell_fiber_densities,
                                           _n=DERIVATIVE))
                if _direction == 'inside':
                    _x_arrays[_distance_index].append(_correlation)
                else:
                    _y_arrays[_distance_index].append(_correlation)
        print('Wilcoxon of insides minus outsides around the zero:')
        print(
            wilcoxon(
                np.array(_x_arrays[_distance_index]) -
                np.array(_y_arrays[_distance_index])))

    # 2d plots
    _colors_array = config.colors(4)
    _legendgroup_array = ['group_1', 'group_1', 'group_2', 'group_2']
    _fig = go.Figure(data=[
        go.Scatter(x=_x,
                   y=_y,
                   name='Dist. ' + str(_distance),
                   mode='markers',
                   marker={
                       'size': 10,
                       'color': _color
                   },
                   legendgroup=_legendgroup)
        for _x, _y, _distance, _color, _legendgroup in zip(
            _x_arrays, _y_arrays, PAIR_DISTANCE, _colors_array,
            _legendgroup_array)
    ],
                     layout={
                         'xaxis': {
                             'title': 'Inner correlation',
                             'zeroline': False,
                             'range': [-1.1, 1.2],
                             'tickmode': 'array',
                             'tickvals': [-1, -0.5, 0, 0.5, 1]
                         },
                         'yaxis': {
                             'title': 'Outer correlation',
                             'zeroline': False,
                             'range': [-1.1, 1.2],
                             'tickmode': 'array',
                             'tickvals': [-1, -0.5, 0, 0.5, 1]
                         },
                         'legend': {
                             'x': 0.1,
                             'y': 1,
                             'xanchor': 'left',
                             'yanchor': 'top',
                             'bordercolor': 'black',
                             'borderwidth': 2,
                             'bgcolor': 'white',
                             'orientation': 'h'
                         },
                         'shapes': [{
                             'type': 'line',
                             'x0': -1,
                             'y0': -1,
                             'x1': -1,
                             'y1': 1,
                             'line': {
                                 'color': 'black',
                                 'width': 2
                             }
                         }, {
                             'type': 'line',
                             'x0': -1,
                             'y0': -1,
                             'x1': 1,
                             'y1': -1,
                             'line': {
                                 'color': 'black',
                                 'width': 2
                             }
                         }, {
                             'type': 'line',
                             'x0': -1,
                             'y0': -1,
                             'x1': 1,
                             'y1': 1,
                             'line': {
                                 'color': 'red',
                                 'width': 2
                             }
                         }]
                     })

    save.to_html(_fig=_fig,
                 _path=os.path.join(paths.PLOTS, save.get_module_name()),
                 _filename='plot')

    for _x, _y, _distance, _color in zip(_x_arrays, _y_arrays, PAIR_DISTANCE,
                                         _colors_array):
        _fig = go.Figure(data=go.Scatter(x=_x,
                                         y=_y,
                                         name='Dist. ' + str(_distance),
                                         mode='markers',
                                         marker={
                                             'size': 10,
                                             'color': _color
                                         },
                                         showlegend=True),
                         layout={
                             'xaxis': {
                                 'title': 'Inner correlation',
                                 'zeroline': False,
                                 'range': [-1.1, 1.2],
                                 'tickmode': 'array',
                                 'tickvals': [-1, -0.5, 0, 0.5, 1]
                             },
                             'yaxis': {
                                 'title': 'Outer correlation',
                                 'zeroline': False,
                                 'range': [-1.1, 1.2],
                                 'tickmode': 'array',
                                 'tickvals': [-1, -0.5, 0, 0.5, 1]
                             },
                             'legend': {
                                 'xanchor': 'left',
                                 'x': 0.1,
                                 'yanchor': 'top',
                                 'bordercolor': 'black',
                                 'borderwidth': 2,
                                 'bgcolor': 'white'
                             },
                             'shapes': [{
                                 'type': 'line',
                                 'x0': -1,
                                 'y0': -1,
                                 'x1': -1,
                                 'y1': 1,
                                 'line': {
                                     'color': 'black',
                                     'width': 2
                                 }
                             }, {
                                 'type': 'line',
                                 'x0': -1,
                                 'y0': -1,
                                 'x1': 1,
                                 'y1': -1,
                                 'line': {
                                     'color': 'black',
                                     'width': 2
                                 }
                             }, {
                                 'type': 'line',
                                 'x0': -1,
                                 'y0': -1,
                                 'x1': 1,
                                 'y1': 1,
                                 'line': {
                                     'color': 'red',
                                     'width': 2
                                 }
                             }]
                         })

        save.to_html(_fig=_fig,
                     _path=os.path.join(paths.PLOTS, save.get_module_name()),
                     _filename='plot_distance_' + str(_distance))

    # box plot
    _box_y_arrays = [[] for _i in PAIR_DISTANCE]
    for _x_array, _y_array, _distance_index in zip(_x_arrays, _y_arrays,
                                                   range(len(PAIR_DISTANCE))):
        for _x, _y in zip(_x_array, _y_array):
            _point_distance = compute_lib.distance_from_a_point_to_a_line(
                _line=[-1, -1, 1, 1], _point=[_x, _y])
            if _x > _y:
                _box_y_arrays[_distance_index].append(_point_distance)
            else:
                _box_y_arrays[_distance_index].append(-_point_distance)

    _fig = go.Figure(data=[
        go.Box(y=_y,
               name=str(_distance),
               boxpoints='all',
               jitter=1,
               pointpos=0,
               line={'width': 1},
               fillcolor='white',
               marker={
                   'size': 10,
                   'color': _color
               },
               showlegend=False) for _y, _distance, _color in zip(
                   _box_y_arrays, PAIR_DISTANCE, _colors_array)
    ],
                     layout={
                         'xaxis': {
                             'title': 'Pair distance (cell diameter)',
                             'zeroline': False,
                             'tickmode': 'array',
                             'tickvals': PAIR_DISTANCE,
                             'type': 'category'
                         },
                         'yaxis': {
                             'title': 'Inner minus outer correlation',
                             'zeroline': False,
                             'tickmode': 'array',
                             'tickvals': [-0.2, 0, 0.2, 0.4]
                         }
                     })

    save.to_html(_fig=_fig,
                 _path=os.path.join(paths.PLOTS, save.get_module_name()),
                 _filename='plot_box')
def main(_low_connectivity=False):
    _names_array, _x_array, _y_array = compute_cell_pairs(_low_connectivity)

    # plot
    _colors_array = config.colors(3)
    _fig = go.Figure(data=[
        go.Scatter(x=_x,
                   y=[np.mean(_array) for _array in _y],
                   name=_name,
                   error_y={
                       'type': 'data',
                       'array': [np.std(_array) for _array in _y],
                       'thickness': 1,
                       'color': _color
                   },
                   mode='markers',
                   marker={
                       'size': 15,
                       'color': _color
                   },
                   opacity=0.7) for _x, _y, _name, _color in zip(
                       _x_array, _y_array, _names_array, _colors_array)
    ],
                     layout={
                         'xaxis': {
                             'title': 'Window distance (cell diameter)',
                             'zeroline': False
                         },
                         'yaxis': {
                             'title': 'Fiber density (z-score)',
                             'range': [-1.7, 13],
                             'zeroline': False,
                             'tickmode': 'array',
                             'tickvals': [0, 4, 8, 12]
                         },
                         'legend': {
                             'xanchor': 'right',
                             'yanchor': 'top',
                             'bordercolor': 'black',
                             'borderwidth': 2
                         },
                         'shapes': [{
                             'type': 'line',
                             'x0': -0.2,
                             'y0': -1.5,
                             'x1': 3.4,
                             'y1': -1.5,
                             'line': {
                                 'color': 'black',
                                 'width': 2
                             }
                         }, {
                             'type': 'line',
                             'x0': -0.2,
                             'y0': -1.5,
                             'x1': -0.2,
                             'y1': 13,
                             'line': {
                                 'color': 'black',
                                 'width': 2
                             }
                         }]
                     })

    save.to_html(_fig=_fig,
                 _path=os.path.join(paths.PLOTS, save.get_module_name()),
                 _filename='plot_low_con_' + str(_low_connectivity))
def main(_low_connectivity=False):
    _simulations = load.structured()
    _simulations = filtering.by_time_points_amount(
        _simulations, TIME_POINT[_low_connectivity])
    _simulations = filtering.by_categories(
        _simulations,
        _is_single_cell=False,
        _is_heterogeneity=True,
        _is_low_connectivity=_low_connectivity,
        _is_causality=False,
        _is_dominant_passive=False,
        _is_fibrin=False)
    _simulations = filtering.by_heterogeneity(_simulations, _std=STD)
    _simulations = filtering.by_pair_distances(_simulations,
                                               _distances=PAIR_DISTANCE)
    print('Total simulations:', len(_simulations))

    _fiber_densities = compute_fiber_densities(_simulations, _low_connectivity)

    _y_arrays = [[] for _i in PAIR_DISTANCE]
    for _distance_index, _distance in enumerate(PAIR_DISTANCE):
        _distance_simulations = filtering.by_pair_distance(_simulations,
                                                           _distance=_distance)
        print('Distance:', _distance, 'Total simulations:',
              len(_distance_simulations))
        _higher_same_counter = 0
        for _same_index in tqdm(range(len(_distance_simulations)),
                                desc='Main loop'):
            _same_simulation = _distance_simulations[_same_index]
            _same_left_cell_fiber_densities = _fiber_densities[(
                _same_simulation, 'left_cell')]
            _same_right_cell_fiber_densities = _fiber_densities[(
                _same_simulation, 'right_cell')]
            _same_correlation = compute_lib.correlation(
                compute_lib.derivative(_same_left_cell_fiber_densities,
                                       _n=DERIVATIVE),
                compute_lib.derivative(_same_right_cell_fiber_densities,
                                       _n=DERIVATIVE))
            for _different_index in range(len(_distance_simulations)):
                if _same_index != _different_index:
                    _different_simulation = _distance_simulations[
                        _different_index]
                    for _same_cell_id, _different_cell_id in product(
                        ['left_cell', 'right_cell'],
                        ['left_cell', 'right_cell']):
                        _same_fiber_densities = \
                            _fiber_densities[(_same_simulation, _same_cell_id)]
                        _different_fiber_densities = \
                            _fiber_densities[(_different_simulation, _different_cell_id)]
                        _different_correlation = compute_lib.correlation(
                            compute_lib.derivative(_same_fiber_densities,
                                                   _n=DERIVATIVE),
                            compute_lib.derivative(_different_fiber_densities,
                                                   _n=DERIVATIVE))
                        _point_distance = compute_lib.distance_from_a_point_to_a_line(
                            _line=[-1, -1, 1, 1],
                            _point=[_same_correlation, _different_correlation])
                        if _same_correlation > _different_correlation:
                            _y_arrays[_distance_index].append(_point_distance)
                            _higher_same_counter += 1
                        else:
                            _y_arrays[_distance_index].append(-_point_distance)
        print('Total points:', len(_y_arrays[_distance_index]))
        print('Wilcoxon around the zero:')
        print(wilcoxon(_y_arrays[_distance_index]))
        print('Higher same amount:',
              _higher_same_counter / len(_y_arrays[_distance_index]))

    # plot
    _colors_array = config.colors(4)
    _fig = go.Figure(data=[
        go.Box(y=_y,
               name=str(_distance),
               boxpoints=False,
               line={'width': 1},
               marker={
                   'size': 10,
                   'color': _color
               },
               showlegend=False) for _y, _distance, _color in zip(
                   _y_arrays, PAIR_DISTANCE, _colors_array)
    ],
                     layout={
                         'xaxis': {
                             'title': 'Pair distance (cell diameter)',
                             'zeroline': False,
                             'tickmode': 'array',
                             'tickvals': PAIR_DISTANCE,
                             'type': 'category'
                         },
                         'yaxis': {
                             'title': 'Same minus different correlation',
                             'range': [-1, 1.1],
                             'zeroline': False,
                             'tickmode': 'array',
                             'tickvals': [-1, -0.5, 0, 0.5, 1]
                         }
                     })

    save.to_html(_fig=_fig,
                 _path=os.path.join(paths.PLOTS, save.get_module_name()),
                 _filename='plot')
Exemple #6
0
def main():
    _simulations = load.structured()
    _simulations = filtering.by_time_points_amount(
        _simulations, _time_points=SIMULATIONS_TIME_POINTS)
    _simulations = filtering.by_categories(_simulations,
                                           _is_single_cell=False,
                                           _is_heterogeneity=False,
                                           _is_low_connectivity=False,
                                           _is_causality=False,
                                           _is_dominant_passive=False,
                                           _is_fibrin=False)
    _simulations = filtering.by_pair_distance(_simulations,
                                              _distance=PAIR_DISTANCE)
    print('Total simulations:', len(_simulations))

    _fiber_densities = compute_fiber_densities(_simulations)

    _kpss_y_arrays = [[] for _i in DERIVATIVES]
    _adf_y_arrays = [[] for _i in DERIVATIVES]
    for _simulation in tqdm(_simulations, desc='Simulations loop'):
        for _cell_id in ['left_cell', 'right_cell']:
            _cell_fiber_densities = _fiber_densities[(_simulation, _cell_id)]
            for _derivative_index, _derivative in enumerate(DERIVATIVES):
                _cell_fiber_densities_derivative = compute_lib.derivative(
                    _cell_fiber_densities, _n=_derivative)
                with warnings.catch_warnings():
                    warnings.simplefilter('ignore',
                                          category=InterpolationWarning)
                    _, _kpss_p_value, _, _ = kpss(
                        _cell_fiber_densities_derivative, nlags='legacy')
                    _kpss_y_arrays[_derivative_index].append(_kpss_p_value)
                    _, _adf_p_value, _, _, _, _ = adfuller(
                        _cell_fiber_densities_derivative)
                    _adf_y_arrays[_derivative_index].append(_adf_p_value)

    # print results
    print('KPSS:')
    for _derivative_index, _derivative in enumerate(DERIVATIVES):
        _stationary_count = len([
            _value for _value in _kpss_y_arrays[_derivative_index]
            if _value > 0.05
        ])
        print(
            'Derivative:', _derivative, 'Stationary:',
            str(_stationary_count / len(_kpss_y_arrays[_derivative_index]) *
                100) + '%')
    print('ADF:')
    for _derivative_index, _derivative in enumerate(DERIVATIVES):
        _stationary_count = len([
            _value for _value in _adf_y_arrays[_derivative_index]
            if _value < 0.05
        ])
        print(
            'Derivative:', _derivative, 'Stationary:',
            str(_stationary_count / len(_adf_y_arrays[_derivative_index]) *
                100) + '%')

    # plot
    _colors_array = config.colors(3)
    for _test_name, _y_title, _y_tickvals, _p_value_line, _y_arrays in \
            zip(
                ['kpss', 'adf'],
                ['KPSS test p-value', 'ADF test p-value'],
                [[0.05, 0.1], [0.05, 1]],
                [0.05, 0.05],
                [_kpss_y_arrays, _adf_y_arrays]
            ):
        _fig = go.Figure(data=[
            go.Box(y=_y,
                   name=_derivative,
                   boxpoints='all',
                   jitter=1,
                   pointpos=0,
                   line={'width': 1},
                   fillcolor='white',
                   marker={
                       'size': 10,
                       'color': _color
                   },
                   opacity=0.7,
                   showlegend=False) for _y, _derivative, _color in zip(
                       _y_arrays, DERIVATIVES_TEXT, _colors_array)
        ],
                         layout={
                             'xaxis': {
                                 'title': 'Fiber density derivative',
                                 'zeroline': False
                             },
                             'yaxis': {
                                 'title': _y_title,
                                 'zeroline': False,
                                 'tickmode': 'array',
                                 'tickvals': _y_tickvals
                             },
                             'shapes': [{
                                 'type': 'line',
                                 'x0': DERIVATIVES[0] - 0.75,
                                 'y0': _p_value_line,
                                 'x1': DERIVATIVES[-1] + 0.75,
                                 'y1': _p_value_line,
                                 'line': {
                                     'color': 'red',
                                     'width': 2,
                                     'dash': 'dash'
                                 }
                             }]
                         })

        save.to_html(_fig=_fig,
                     _path=os.path.join(paths.PLOTS, save.get_module_name()),
                     _filename='plot_' + _test_name)
def main():
    _simulations = load.structured()
    _simulations = filtering.by_time_points_amount(_simulations,
                                                   _time_points=TIME_POINTS)
    _simulations = filtering.by_categories(_simulations,
                                           _is_single_cell=True,
                                           _is_heterogeneity=False,
                                           _is_low_connectivity=False,
                                           _is_causality=False,
                                           _is_dominant_passive=False,
                                           _is_fibrin=False)
    print('Total simulations:', len(_simulations))

    _fiber_densities = compute_simulations_fiber_densities(_simulations)

    _y_arrays = [[] for _i in DERIVATIVES]
    for _index_1 in tqdm(range(len(_simulations)), desc='Simulations loop'):
        _simulation_1 = _simulations[_index_1]
        _cell_1_fiber_densities = \
            [_fiber_densities[(_simulation_1, _direction)] for _direction in ['left', 'right', 'up', 'down']]
        _cell_1_fiber_densities = np.mean(_cell_1_fiber_densities, axis=0)
        for _index_2 in range(_index_1 + 1, len(_simulations)):
            _simulation_2 = _simulations[_index_2]
            _cell_2_fiber_densities = \
                [_fiber_densities[(_simulation_2, _direction)] for _direction in ['left', 'right', 'up', 'down']]
            _cell_2_fiber_densities = np.mean(_cell_2_fiber_densities, axis=0)
            for _derivative_index, _derivative in enumerate(DERIVATIVES):
                _y_arrays[_derivative_index].append(
                    compute_lib.correlation(
                        compute_lib.derivative(_cell_1_fiber_densities,
                                               _n=_derivative),
                        compute_lib.derivative(_cell_2_fiber_densities,
                                               _n=_derivative)))

    print('Total points:', len(_y_arrays[0]))
    print('Wilcoxon around the zero')
    for _y_array, _derivative in zip(_y_arrays, DERIVATIVES):
        print('Derivative:', _derivative, wilcoxon(_y_array))

    # plot
    _colors_array = config.colors(3)
    _fig = go.Figure(data=[
        go.Box(y=_y,
               name=_derivative,
               boxpoints='all',
               jitter=1,
               pointpos=0,
               line={'width': 1},
               fillcolor='white',
               marker={
                   'size': 10,
                   'color': _color
               },
               opacity=0.7,
               showlegend=False) for _y, _derivative, _color in zip(
                   _y_arrays, DERIVATIVES_TEXT, _colors_array)
    ],
                     layout={
                         'xaxis': {
                             'title': 'Fiber density derivative',
                             'zeroline': False
                         },
                         'yaxis': {
                             'title': 'Correlation',
                             'range': [-1, 1],
                             'zeroline': False,
                             'tickmode': 'array',
                             'tickvals': [-1, -0.5, 0, 0.5, 1]
                         }
                     })

    save.to_html(_fig=_fig,
                 _path=os.path.join(paths.PLOTS, save.get_module_name()),
                 _filename='plot')
Exemple #8
0
def main():
    _simulations = load.structured()
    _simulations = filtering.by_time_points_amount(_simulations, TIME_POINT)
    _simulations = filtering.by_categories(
        _simulations,
        _is_single_cell=False,
        _is_heterogeneity=None,
        _is_low_connectivity=False,
        _is_causality=False,
        _is_dominant_passive=False,
        _is_fibrin=False
    )
    _simulations = filtering.by_heterogeneities(_simulations, _stds=STDS)
    _simulations = filtering.by_pair_distance(_simulations, _distance=PAIR_DISTANCE)
    print('Total simulations:', len(_simulations))

    _fiber_densities = compute_fiber_densities(_simulations)

    # stds loop
    _std_communicating = [[] for _i in STDS]
    _std_non_communicating = [[] for _i in STDS]
    for _std_index, _std in enumerate(STDS):
        print('Std:', _std)
        _simulations_std = filtering.by_heterogeneity(_simulations, _std=_std)
        print('Total simulations:', len(_simulations_std))

        # communicating loop
        for _simulation in tqdm(_simulations_std, desc='Communicating pairs loop'):
            _left_cell_fiber_densities = _fiber_densities[(_simulation, 'left_cell')]
            _right_cell_fiber_densities = _fiber_densities[(_simulation, 'right_cell')]
            _correlation = compute_lib.correlation(
                compute_lib.derivative(_left_cell_fiber_densities, _n=DERIVATIVE),
                compute_lib.derivative(_right_cell_fiber_densities, _n=DERIVATIVE)
            )
            _std_communicating[_std_index].append(_correlation)

        # non-communicating loop
        _simulations_indices = range(len(_simulations_std))
        for _simulation_1_index in tqdm(_simulations_indices, desc='Non-communicating pairs loop'):
            _simulation_1 = _simulations_std[_simulation_1_index]
            for _simulation_2_index in _simulations_indices[_simulation_1_index + 1:]:
                _simulation_2 = _simulations_std[_simulation_2_index]
                for _simulation_1_cell_id, _simulation_2_cell_id in product(['left_cell', 'right_cell'],
                                                                            ['left_cell', 'right_cell']):
                    _simulation_1_fiber_densities = _fiber_densities[(_simulation_1, _simulation_1_cell_id)]
                    _simulation_2_fiber_densities = _fiber_densities[(_simulation_2, _simulation_2_cell_id)]
                    _correlation = compute_lib.correlation(
                        compute_lib.derivative(_simulation_1_fiber_densities, _n=DERIVATIVE),
                        compute_lib.derivative(_simulation_2_fiber_densities, _n=DERIVATIVE)
                    )
                    _std_non_communicating[_std_index].append(_correlation)

        print('Wilcoxon rank-sum test:', ranksums(_std_communicating[_std_index], _std_non_communicating[_std_index]))

    # histogram plot, once with and once without the legend
    _colors_array = config.colors(len(STDS))
    for _show_legend in [True, False]:
        _fig = go.Figure(
            data=[
                *[
                    go.Histogram(
                        x=_non_communicating,
                        name='STD ' + str(_std),
                        marker={
                            'color': _color
                        },
                        nbinsx=10,
                        histnorm='probability',
                        showlegend=_show_legend
                    ) for _std, _non_communicating, _color in zip(STDS, _std_non_communicating, _colors_array)
                ],
                *[
                    go.Scatter(
                        x=_communicating,
                        y=[0.5 - 0.02 * _std_index for _i in range(len(_communicating))],
                        mode='text',
                        text='●',
                        textfont={
                          'color': _color,
                          'size': 15
                        },
                        showlegend=False
                    ) for _std_index, _communicating, _color in zip(range(len(STDS)), _std_communicating, _colors_array)
                ]
            ],
            layout={
                'xaxis': {
                    'title': 'Correlation',
                    'zeroline': False
                },
                'yaxis': {
                    'title': 'Fraction',
                    'zeroline': False
                },
                'legend': {
                    'xanchor': 'right',
                    'yanchor': 'top',
                    'bordercolor': 'black',
                    'borderwidth': 2
                },
                'bargap': 0.1
            }
        )

        save.to_html(
            _fig=_fig,
            _path=os.path.join(paths.PLOTS, save.get_module_name()),
            _filename='plot_legend_' + str(_show_legend)
        )
Exemple #9
0
def main(_directions=None):
    if _directions is None:
        _directions = ['inside', 'outside']

    _simulations = load.structured()
    _simulations = filtering.by_time_points_amount(
        _simulations, _time_points=SIMULATIONS_TIME_POINTS)
    _simulations = filtering.by_categories(_simulations,
                                           _is_single_cell=False,
                                           _is_heterogeneity=False,
                                           _is_low_connectivity=False,
                                           _is_causality=False,
                                           _is_dominant_passive=False,
                                           _is_fibrin=False)
    _simulations = filtering.by_pair_distance(_simulations,
                                              _distance=PAIR_DISTANCE)
    print('Total simulations:', len(_simulations))

    _fiber_densities = compute_fiber_densities(_simulations, _directions)

    for _direction in _directions:
        _y_arrays = [[] for _i in DERIVATIVES]
        for _simulation in tqdm(_simulations, desc='Simulations loop'):
            _left_cell_fiber_densities = _fiber_densities[(_simulation,
                                                           'left_cell',
                                                           _direction)]
            _right_cell_fiber_densities = _fiber_densities[(_simulation,
                                                            'right_cell',
                                                            _direction)]
            for _derivative_index, _derivative in enumerate(DERIVATIVES):
                _y_arrays[_derivative_index].append(
                    compute_lib.correlation(
                        compute_lib.derivative(_left_cell_fiber_densities,
                                               _n=_derivative),
                        compute_lib.derivative(_right_cell_fiber_densities,
                                               _n=_derivative)))

        print('Direction:', _direction)
        print('Total pairs:', len(_y_arrays[0]))
        print('Wilcoxon around the zero')
        for _y_array, _derivative in zip(_y_arrays, DERIVATIVES):
            print('Derivative:', _derivative, wilcoxon(_y_array))

        # plot
        _y_title = 'Inner correlation' if _direction == 'inside' else 'Outer correlation'
        _colors_array = config.colors(3)
        _fig = go.Figure(data=[
            go.Box(y=_y,
                   name=_derivative,
                   boxpoints='all',
                   jitter=1,
                   pointpos=0,
                   line={'width': 1},
                   fillcolor='white',
                   marker={
                       'size': 10,
                       'color': _color
                   },
                   opacity=0.7,
                   showlegend=False) for _y, _derivative, _color in zip(
                       _y_arrays, DERIVATIVES_TEXT, _colors_array)
        ],
                         layout={
                             'xaxis': {
                                 'title': 'Fiber density derivative',
                                 'zeroline': False
                             },
                             'yaxis': {
                                 'title': _y_title,
                                 'range': [-1, 1],
                                 'zeroline': False,
                                 'tickmode': 'array',
                                 'tickvals': [-1, -0.5, 0, 0.5, 1]
                             }
                         })

        save.to_html(_fig=_fig,
                     _path=os.path.join(paths.PLOTS, save.get_module_name()),
                     _filename='plot_direction_' + _direction)