def __init__(self, video_path, list_path, patch_size, rotate=10, scale=1.2, is_train=True, moreaug=True): super(VidListv1, self).__init__() self.data_dir = video_path self.list_path = list_path normalize = transforms.Normalize(mean=(128, 128, 128), std=(128, 128, 128)) t = [] if rotate > 0: t.append(transforms.RandomRotate(rotate)) if scale > 0: t.append(transforms.RandomScale(scale)) t.extend([ transforms.RandomCrop(patch_size, seperate=moreaug), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize ]) self.transforms = transforms.Compose(t) self.is_train = is_train self.read_list()
def __init__(self, video_path, list_path, patch_size, rotate=10, scale=1.2, is_train=True, moreaug=True): super(VidListv1, self).__init__() csv_path = "/raid/codes/CorrFlows/functional/feeder/dataset/oxuva.csv" filenames = open(csv_path).readlines() frame_all = [filename.split(',')[0].strip() for filename in filenames] nframes = [ int(filename.split(',')[1].strip()) for filename in filenames ] self.data_dir = video_path self.list = frame_all self.nframes = nframes normalize = transforms.Normalize(mean=(128, 128, 128), std=(128, 128, 128)) t = [] if rotate > 0: t.append(transforms.RandomRotate(rotate)) if scale > 0: t.append(transforms.RandomScale(scale)) t.extend([ transforms.RandomCrop(patch_size, seperate=moreaug), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize ]) self.transforms = transforms.Compose(t) self.is_train = is_train
def __init__(self, video_path, list_path, patch_size, rotate=10, scale=1.2, is_train=True, moreaug=True): super(VidListv1, self).__init__() csv_path = "/raid/codes/UVC/libs/GOT-new.csv" filenames = open(csv_path).readlines() frame_all = [filename.split(',')[0].strip() for filename in filenames] nframes = [ int(filename.split(',')[1].strip()) for filename in filenames ] self.data_dir = video_path self.list = frame_all self.nframes = nframes normalize = transforms.Normalize(mean=(128, 128, 128), std=(128, 128, 128)) t = [] if rotate > 0: t.append(transforms.RandomRotate(rotate)) if scale > 0: t.append(transforms.RandomScale(scale)) t.extend([ transforms.RandomCrop(patch_size, seperate=moreaug), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize ]) self.transforms = transforms.Compose(t) self.is_train = is_train self.video_list = [] for filename in filenames: record = VideoRecord() record.path = os.path.join(video_path, filename.split(',')[0].strip()) record.num_frames = int(filename.split(',')[1].strip( )) # len(glob.glob(os.path.join(video_path, '*.jpg'))) record.label = filename.split(',')[0].strip() self.video_list.append(record)