def run_clustering(data: Dataset,
                   embeddings: np.ndarray,
                   use_full_matrix: bool = False,
                   verbose: bool = False,
                   **params) -> AgglomerativeClustering:
    """
    Run an hierarchical clustering algorithm on a dataset. Hierarchical clustering is done using
    `sklearn.cluster.AgglomerativeClustering`.

    :param data: a `Dataset` of length n containing the ids of the entities to cluster
    :param embeddings: a m x d matrix containing the entities' embeddings
    :param use_full_matrix: if True, then m=d and embedding indices should match dataset indices. Else, m > n
        and entity i in the dataset is represented by line i in the embedding matrix
    :param verbose: whether to display a Timer
    :param params: a parameter dict passed to `AgglomerativeClustering`
    :return: the fitted AgglomerativeClustering object
    """
    if not use_full_matrix:
        embeddings = embeddings[data.indices]

    with Timer(
            f"{len(data)} entities with dimension {embeddings.shape[1]} clustered in {{}}",
            disable=not verbose):
        clu = AgglomerativeClustering(**params).fit(embeddings)
    return clu

args = parse_args()
cfg.load_from_yaml(args.cfg_file, cfg)

## data loader
train_data = get_loader(cfg.data_dir, cfg.split, data_layer,
                        is_training=True, batch_size=cfg.batch_size, num_workers=cfg.data_workers)
ANCHORS = np.vstack([anc.reshape([-1, 4]) for anc in train_data.dataset.ANCHORS])
class_names = train_data.dataset.classes
print('dataset len: {}'.format(len(train_data.dataset)))

pixels = np.zeros((cfg.num_classes, ), dtype=np.int64)
instances = np.zeros((cfg.num_classes, ), dtype=np.int64)

timer = Timer()
timer.tic()
for step, batch in enumerate(train_data):
    _, _, inst_masks, _, _, gt_boxes, _ = batch
    inst_masks = \
        everything2numpy(inst_masks)

    for j, gt_box in enumerate(gt_boxes):
        if gt_box.size > 0:
            cls = gt_box[:, -1].astype(np.int32)
            for i, c in enumerate(cls):
                instances[c] += 1
                m = inst_masks[j][i]
                pixels[c] += m.sum()
    t = timer.toc(False)
Exemple #3
0
model.cuda()

# # DATA LOADER
get_loader = get_data_loader(cfg.datasetname)
train_data = get_loader()
class_names = train_data.dataset.classes
print('dataset len: {}'.format(len(train_data.dataset)))

tb_dir = os.path.join(cfg.train_dir, cfg.backbone + '_' + cfg.datasetname,
                      time.strftime("%h%d_%H"))
writer = tbx.FileWriter(tb_dir)
summary_out = []

global_step = 0
timer = Timer()

for ep in range(start_epoch, cfg.max_epoch):
    if ep in cfg.lr_decay_epoches and cfg.solver == 'SGD':
        lr *= cfg.lr_decay
        adjust_learning_rate(optimizer, lr)
        print('adjusting learning rate {:.6f}'.format(lr))

    for step, batch in enumerate(train_data):
        timer.tic()

        input, anchors_np, im_scale_list, image_ids, gt_boxes_list, rpn_targets, _, _ = batch
        #
        gt_boxes_list = ScatterList(gt_boxes_list)
        input = everything2cuda(input)
        rpn_targets = everything2cuda(rpn_targets)
Exemple #4
0
                           collate_fn=collate_fn_testing)


if __name__ == '__main__':
    import os, sys
    sys.path.insert(0, os.path.join(os.path.dirname(__file__), '../..'))
    from libs.layers.data_layer import data_layer
    from libs.visualization.vis import draw_detection
    from libs.nets.utils import tensor2numpy
    from libs.utils.timer import Timer

    ############### without dataloader
    if False:
        dset = coco('/home/shang/repos/maskrcnn/data/coco', 'val2014',
                    data_layer, True)
        t = Timer()
        t.tic()
        cnt = 0
        for _ in range(10):
            data = []
            for _ in range(6):
                d = dset[cnt]
                cnt += 1
                data.append(d)
            batch = collate_fn(data)
        end_t = t.toc() / 10.0
        print('Time:', end_t)

    # loader = get_loader('/home/shang/repos/maskrcnn/data/coco', 'val2014', data_layer, True)
    loader = get_loader('/home/shang/repos/maskrcnn/data/coco', 'minival2014',
                        data_layer, True)
Exemple #5
0
def main():
    # config model and lr
    num_anchors = len(cfg.anchor_ratios) * len(cfg.anchor_scales[0]) * len(cfg.anchor_shift) \
        if isinstance(cfg.anchor_scales[0], list) else \
        len(cfg.anchor_ratios) * len(cfg.anchor_scales)

    resnet = resnet50 if cfg.backbone == 'resnet50' else resnet101
    detection_model = MaskRCNN if cfg.model_type.lower(
    ) == 'maskrcnn' else RetinaNet

    model = detection_model(resnet(pretrained=True, maxpool5=cfg.maxpool5),
                            num_classes=cfg.num_classes,
                            num_anchors=num_anchors,
                            strides=cfg.strides,
                            in_channels=cfg.in_channels,
                            f_keys=cfg.f_keys,
                            num_channels=256,
                            is_training=False,
                            activation=cfg.class_activation)

    lr = cfg.lr
    start_epoch = 0
    if cfg.restore is not None:
        meta = load_net(cfg.restore, model)
        print(meta)
        if meta[0] >= 0:
            start_epoch = meta[0] + 1
            lr = meta[1]
        print('Restored from %s, starting from %d epoch, lr:%.6f' %
              (cfg.restore, start_epoch, lr))
    else:
        raise ValueError('restore is not set')

    model.cuda()
    model.eval()

    class_names = test_data.dataset.classes
    print('dataset len: {}'.format(len(test_data.dataset)))

    tb_dir = os.path.join(cfg.train_dir, cfg.backbone + '_' + cfg.datasetname,
                          'test', time.strftime("%h%d_%H"))
    writer = tbx.FileWriter(tb_dir)

    # main loop
    timer_all = Timer()
    timer_post = Timer()
    all_results1 = []
    all_results2 = []
    all_results_gt = []
    for step, batch in enumerate(test_data):

        timer_all.tic()

        # NOTE: Targets is in NHWC order!!
        # input, anchors_np, im_scale_list, image_ids, gt_boxes_list = batch
        # input = everything2cuda(input)
        input_t, anchors_np, im_scale_list, image_ids, gt_boxes_list = batch
        input = everything2cuda(input_t, volatile=True)

        outs = model(input, gt_boxes_list=None, anchors_np=anchors_np)

        if cfg.model_type == 'maskrcnn':
            rpn_logit, rpn_box, rpn_prob, rpn_labels, rpn_bbtargets, rpn_bbwghts, anchors, \
            rois, roi_img_ids, rcnn_logit, rcnn_box, rcnn_prob, rcnn_labels, rcnn_bbtargets, rcnn_bbwghts = outs
            outputs = [
                rois, roi_img_ids, rpn_logit, rpn_box, rpn_prob, rcnn_logit,
                rcnn_box, rcnn_prob, anchors
            ]
            targets = []
        elif cfg.model_type == 'retinanet':
            rpn_logit, rpn_box, rpn_prob, _, _, _ = outs
            outputs = [rpn_logit, rpn_box, rpn_prob]
        else:
            raise ValueError('Unknown model type: %s' % cfg.model_type)

        timer_post.tic()

        dets_dict = model.get_final_results(
            outputs,
            everything2cuda(anchors_np),
            score_threshold=0.01,
            max_dets=cfg.max_det_num * cfg.batch_size,
            overlap_threshold=cfg.overlap_threshold)
        if 'stage1' in dets_dict:
            Dets = dets_dict['stage1']
        else:
            raise ValueError('No stage1 results:', dets_dict.keys())
        Dets2 = dets_dict['stage2'] if 'stage2' in dets_dict else Dets

        t3 = timer_post.toc()
        t = timer_all.toc()

        formal_res1 = dataset.to_detection_format(copy.deepcopy(Dets),
                                                  image_ids, im_scale_list)
        formal_res2 = dataset.to_detection_format(copy.deepcopy(Dets2),
                                                  image_ids, im_scale_list)
        all_results1 += formal_res1
        all_results2 += formal_res2

        Dets_gt = []
        for gb in gt_boxes_list:
            cpy_mask = gb[:, 4] >= 1
            gb = gb[cpy_mask]
            n = cpy_mask.astype(np.int32).sum()
            res_gt = np.zeros((n, 6))
            res_gt[:, :4] = gb[:, :4]
            res_gt[:, 4] = 1.
            res_gt[:, 5] = gb[:, 4]
            Dets_gt.append(res_gt)
        formal_res_gt = dataset.to_detection_format(Dets_gt, image_ids,
                                                    im_scale_list)
        all_results_gt += formal_res_gt

        if step % cfg.log_image == 0:
            input_np = everything2numpy(input)
            summary_out = []
            Is = single_shot.draw_detection(input_np,
                                            Dets,
                                            class_names=class_names)
            Is = Is.astype(np.uint8)
            summary_out += log_images(Is, image_ids, step, prefix='Detection/')

            Is = single_shot.draw_detection(input_np,
                                            Dets2,
                                            class_names=class_names)
            Is = Is.astype(np.uint8)
            summary_out += log_images(Is,
                                      image_ids,
                                      step,
                                      prefix='Detection2/')

            Imgs = single_shot.draw_gtboxes(input_np,
                                            gt_boxes_list,
                                            class_names=class_names)
            Imgs = Imgs.astype(np.uint8)
            summary_out += log_images(Imgs,
                                      image_ids,
                                      float(step),
                                      prefix='GT')

            for s in summary_out:
                writer.add_summary(s, float(step))

        if step % cfg.display == 0:
            print(time.strftime("%H:%M:%S ") +
                  'Epoch %d iter %d: speed %.3fs (%.3fs)' % (0, step, t, t3) +
                  ' ImageIds: ' + ', '.join(str(s) for s in image_ids),
                  end='\r')

    res_dict = {
        'stage1': all_results1,
        'stage2': all_results2,
        'gt': all_results_gt
    }
    return res_dict
Exemple #6
0
def main():
    # config model and lr
    num_anchors = len(cfg.anchor_ratios) * len(cfg.anchor_scales[0]) \
        if isinstance(cfg.anchor_scales[0], list) else \
        len(cfg.anchor_ratios) * len(cfg.anchor_scales)

    resnet = resnet50 if cfg.backbone == 'resnet50' else resnet101
    detection_model = MaskRCNN if cfg.model_type.lower(
    ) == 'maskrcnn' else RetinaNet

    model = detection_model(resnet(pretrained=True),
                            num_classes=cfg.num_classes,
                            num_anchors=num_anchors,
                            strides=cfg.strides,
                            in_channels=cfg.in_channels,
                            f_keys=cfg.f_keys,
                            num_channels=256,
                            is_training=False,
                            activation=cfg.class_activation)

    lr = cfg.lr
    start_epoch = 0
    if cfg.restore is not None:
        meta = load_net(cfg.restore, model)
        print(meta)
        if meta[0] >= 0:
            start_epoch = meta[0] + 1
            lr = meta[1]
        print('Restored from %s, starting from %d epoch, lr:%.6f' %
              (cfg.restore, start_epoch, lr))
    else:
        raise ValueError('restore is not set')

    model.cuda()
    model.eval()

    ANCHORS = np.vstack(
        [anc.reshape([-1, 4]) for anc in test_data.dataset.ANCHORS])
    model.anchors = everything2cuda(ANCHORS.astype(np.float32))

    class_names = test_data.dataset.classes
    print('dataset len: {}'.format(len(test_data.dataset)))

    tb_dir = os.path.join(cfg.train_dir, cfg.backbone + '_' + cfg.datasetname,
                          'test', time.strftime("%h%d_%H"))
    writer = tbx.FileWriter(tb_dir)
    summary_out = []

    # main loop
    timer_all = Timer()
    timer_post = Timer()
    all_results1 = []
    all_results2 = []
    all_results_gt = []
    for step, batch in enumerate(test_data):

        timer_all.tic()

        # NOTE: Targets is in NHWC order!!
        input, image_ids, gt_boxes_list, image_ori = batch
        input = everything2cuda(input)

        outs = model(input)

        timer_post.tic()

        dets_dict = model.get_final_results(
            score_threshold=0.05,
            max_dets=cfg.max_det_num * cfg.batch_size,
            overlap_threshold=cfg.overlap_threshold)
        if 'stage1' in dets_dict:
            Dets = dets_dict['stage1']
        else:
            raise ValueError('No stage1 results:', dets_dict.keys())
        Dets2 = dets_dict['stage2'] if 'stage2' in dets_dict else Dets

        t3 = timer_post.toc()
        t = timer_all.toc()

        formal_res1 = dataset.to_detection_format(
            copy.deepcopy(Dets),
            image_ids,
            ori_sizes=[im.shape for im in image_ori])
        formal_res2 = dataset.to_detection_format(
            copy.deepcopy(Dets2),
            image_ids,
            ori_sizes=[im.shape for im in image_ori])
        all_results1 += formal_res1
        all_results2 += formal_res2

        if step % cfg.log_image == 0:
            input_np = everything2numpy(input)
            summary_out = []
            Is = single_shot.draw_detection(input_np,
                                            Dets,
                                            class_names=class_names)
            Is = Is.astype(np.uint8)
            summary_out += log_images(Is, image_ids, step, prefix='Detection/')

            Is = single_shot.draw_detection(input_np,
                                            Dets2,
                                            class_names=class_names)
            Is = Is.astype(np.uint8)
            summary_out += log_images(Is,
                                      image_ids,
                                      step,
                                      prefix='Detection2/')

            Imgs = single_shot.draw_gtboxes(input_np,
                                            gt_boxes_list,
                                            class_names=class_names)
            Imgs = Imgs.astype(np.uint8)
            summary_out += log_images(Imgs,
                                      image_ids,
                                      float(step),
                                      prefix='GT')

            for s in summary_out:
                writer.add_summary(s, float(step))

        if step % cfg.display == 0:
            print(time.strftime("%H:%M:%S ") +
                  'Epoch %d iter %d: speed %.3fs (%.3fs)' % (0, step, t, t3) +
                  ' ImageIds: ' + ', '.join(str(s) for s in image_ids),
                  end='\r')

    res_dict = {
        'stage1': all_results1,
        'stage2': all_results2,
        'gt': all_results_gt
    }
    return res_dict