Exemple #1
0
def invoke_xgb(data_train, data_test, params):
    dtrain = survival_dmat(data_train, t_col=col_t, e_col=col_e, label_col="Y")
    dtest = survival_dmat(data_test, t_col=col_t, e_col=col_e, label_col="Y")
    
    # params
    params_model = {
        'eta': params['eta'],
        'max_depth': params['max_depth'], 
        'min_child_weight': params['min_child_weight'],
        'subsample': params['subsample'],
        'colsample_bytree': params['colsample_bytree'],
        'lambda': params['reg_lambda'],
        'gamma': params['reg_gamma'],
        'silent': 1
    }
    
    # Build and train model
    model = BecCox(
        params_model,
        loss_alpha=params["loss_alpha"]
    )

    eval_result = model.train(
        dtrain,
        num_rounds=params['nrounds'],
        silent=True,
        plot=False
    )
    
    # Evaluation
    return model.evals(dtest)
Exemple #2
0
def invoke_xgb(data_train, data_test, params):
    #print params
    dtrain = survival_dmat(data_train, t_col=T_col, e_col=E_col, label_col="Y")
    dtest = survival_dmat(data_test, t_col=T_col, e_col=E_col, label_col="Y")
    params_xgb = {
        'eta': params['eta'],
        'max_depth': params['max_depth'],
        'min_child_weight': params['min_child_weight'],
        'subsample': params['subsample'],
        'colsample_bytree': params['colsample_bytree'],
        'lambda': params['reg_lambda'],
        'gamma': params['reg_gamma'],
        'objective': 'multi:softprob',
        'num_class': K + 1,
        'silent': 1,
        'seed': 42
    }
    # Build and train model
    model = HitBoost(params_xgb,
                     loss_alpha=params['loss_alpha'],
                     loss_gamma=params['loss_gamma'])
    eval_result = model.train(dtrain,
                              num_rounds=params['nrounds'],
                              silent=True,
                              plot=False)
    # Evaluation
    return model.evals(dtest)