def bootstrap_matching(ctx, n=100, filter=None, cb_post_match=None): all_res = dict() all_epochs = [] all_imgs = dict() for i, file in enumerate(ctx.files): img = ctx.open_file(file) all_epochs.append(img.get_epoch()) res = ctx.detection(img, filter=filter) all_res[img.get_epoch()] = res all_imgs[img.get_epoch()] = img t = time.time() all_match_ratio = [] for i in range(n): eta = "" if i > 0: remaining = (np.round((time.time() - t) / float(i) * (n - i))) eta = " (ETA: %s)" % time.strftime("%H:%M:%S", time.localtime(time.time() + remaining)) print "Run %s / %s%s" % (i + 1, n, eta) shuffled = nputils.permutation_no_succesive(all_epochs) match_ratio_list = [] match_results = project.AnalysisResult(ctx.config) for epoch1, epoch2 in nputils.pairwise(shuffled): res1 = all_res[epoch1].copy() res2 = all_res[epoch2].copy() # print "Matching:", res1.get_epoch(), "vs", res2.get_epoch() res1.epoch = epoch1 for segments in res1: segments.epoch = epoch1 res2.epoch = epoch2 for segments in res2: segments.epoch = epoch2 full_match_res = ctx.match(res1, res2, verbose=False) match_results.add_match_result(full_match_res) match_results.add_detection_result(all_imgs[epoch1], res1) for match_res in full_match_res: n_segments = match_res.segments1.size() match_ratio = (match_res.get_match().size()) / (float(n_segments)) match_ratio_list.append(match_ratio) all_match_ratio.append(np.mean(match_ratio_list)) if cb_post_match is not None: cb_post_match(shuffled, match_results) # print "Match ratio stat:", nputils.stat(match_ratio_list) # print all_match_ratio print "Match ratio stat:", nputils.stat(all_match_ratio)
def bootstrap_scc(ctx, config, output_dir, n, nwise = 2, append=False, verbose=False, seperate_scales=False): """Perform Stack Cross Correlation analysis n time and store results in output_dir Parameters ---------- ctx : :class:`wise.project.AnalysisContext` config : :class:`wise.scc.SCCConfiguration` output_dir : str n : int append : bool, optional Append results seperate_scales : bool, optional .. _tags: task_scc """ random_shift = config.get("img_rnd_shift") if config.get("shuffle") == config.get("rnd_pos_shift"): print "Configuration Error: either 'shuffle' or 'rnd_pos_shift' need to be set" return all_files = list(ctx.files) prj = ctx.get_projection(ctx.open_file(all_files[0])) all_res1 = dict() all_res2 = dict() all_epochs = [] for file1 in ctx.files: img1 = ctx.open_file(file1) img1.data = nputils.shift2d(img1.data, np.random.uniform(-random_shift, random_shift, 2)) img2 = ctx.open_file(file1) img2.data = nputils.shift2d(img2.data, np.random.uniform(-random_shift, random_shift, 2)) res1 = ctx.detection(img1, filter=config.get("filter1")) print "-> Numbers of detected SSP: %s" % ", ".join([str(k.size()) for k in res1]) res2 = ctx.detection(img2, filter=config.get("filter2")) print "-> Numbers of detected SSP: %s" % ", ".join([str(k.size()) for k in res2]) all_res1[file1] = res1 all_res2[file1] = res2 all_epochs.append(img1.get_epoch()) t = time.time() # all_segments2_img = dict() # for file, segments2 in all_res2.items(): # all_segments2_img[file] = [k.get_img().data.copy() for k in segments2] if not os.path.exists(output_dir): os.mkdir(output_dir) files = os.listdir(output_dir) if append and len(files) > 0: if seperate_scales and os.path.isdir(os.path.join(output_dir, files[0])): files = os.listdir(os.path.join(output_dir, files[0])) all_i = sorted([int(os.path.splitext(file)[0].split('_')[-1]) for file in files]) if len(all_i) == 0: start = 0 else: start = all_i[-1] + 1 else: start = 0 for i in range(n): eta = "" if i > 0: remaining = (np.round((time.time() - t) / float(i) * (n - i))) eta = " (ETA: %s)" % time.strftime("%H:%M:%S", time.localtime(time.time() + remaining)) print "Run %s / %s%s" % (i + 1, n, eta) if config.get("shuffle"): # np.random.shuffle(all_files) shuffled = nputils.permutation_no_succesive(all_files) files_pair = nputils.nwise(shuffled, nwise) else: files_pair = nputils.nwise(all_files, nwise) epochs_pair = nputils.nwise(all_epochs, nwise) scc_result = scc.StackCrossCorrelation(config, verbose=verbose) for shuffled_pair, epoch_pair in zip(files_pair, epochs_pair): res1 = all_res1[shuffled_pair[0]] res2 = all_res2[shuffled_pair[-1]] # for segments2, segments2_img in zip(res2, all_segments2_img[shuffled_pair[-1]]): # segments2.get_img().data = nputils.shift2d(segments2_img, # np.random.uniform(-random_shift, random_shift, 2)) res1.epoch = epoch_pair[0] res2.epoch = epoch_pair[-1] delta_t, velocity_pix, tol_pix = scc_result.get_velocity_resolution(prj, res1, res2) if not nputils.in_range(tol_pix, config.get("tol_pix_range")): print "-> Skip: Not in the allowed range of pixel velocity resolution:", tol_pix continue scc_result.process(prj, res1, res2) if seperate_scales: for scale, gncc_map in scc_result.get_mean_ncc_scales(smooth_len=1).items(): save_dir = os.path.join(output_dir, "scale_%s" % scale) if not os.path.exists(save_dir): os.mkdir(save_dir) imgutils.Image(gncc_map).save_to_fits(os.path.join(save_dir, "gncc_map_%s.fits" % (start + i))) else: gncc_map = scc_result.get_global_ncc(smooth_len=1) imgutils.Image(gncc_map).save_to_fits(os.path.join(output_dir, "gncc_map_%s.fits" % (start + i))) print "Done"