Exemple #1
0
def main():
    symbol = lightened_moon_feature(num_classes=40, use_fuse=True)
    devs = mx.cpu() if args.gpus is None else [mx.gpu(int(i)) for i in args.gpus.split(',')]
    _, arg_params, aux_params = mx.model.load_checkpoint(args.model_load_prefix, args.model_load_epoch)
    detector = dlib.get_frontal_face_detector()
    face_cascade = cv2.CascadeClassifier(args.opencv)
    # read img and drat face rect
    img = cv2.imread(args.img)
    faces = detector(img, 1)
    gray = np.zeros(img.shape[0:2])
    if len(faces) == 0:
        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        opencv_faces = face_cascade.detectMultiScale(gray, 1.3, 5)
        for (x,y,w,h) in opencv_faces:
            faces.append(dlib.rectangle(int(x), int(y), int(x+w), int(y+h)))
    max_face = faces[0]
    if len(faces) > 0:
            max_face = max(faces, key=lambda rect: rect.width() * rect.height())
    for f in faces:
        if f == max_face:
            cv2.rectangle(img, (f.left(), f.top()), (f.right(), f.bottom()), (0,0,255), 2)
        else:
            cv2.rectangle(img, (f.left(), f.top()), (f.right(), f.bottom()), (255,0,0), 2)
    cv2.imwrite(args.img.replace('jpg', 'png'), img)
    # crop face area
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    pad = [0.25, 0.25, 0.25, 0.25] if args.pad is None else args.pad
    left = int(max(0, max_face.left() - max_face.width()*float(pad[0])))
    top = int(max(0, max_face.top() - max_face.height()*float(pad[1])))
    right = int(min(gray.shape[1], max_face.right() + max_face.width()*float(pad[2])))
    bottom = int(min(gray.shape[0], max_face.bottom()+max_face.height()*float(pad[3])))
    gray = gray[left:right, top:bottom]
    gray = cv2.resize(gray, (args.size, args.size))/255.0
    img = np.expand_dims(np.expand_dims(gray, axis=0), axis=0)
    # get pred
    arg_params['data'] = mx.nd.array(img, devs)
    exector = symbol.bind(devs, arg_params ,args_grad=None, grad_req="null", aux_states=aux_params)
    exector.forward(is_train=False)
    exector.outputs[0].wait_to_read()
    output = exector.outputs[0].asnumpy()
    text = ["5_o_Clock_Shadow","Arched_Eyebrows","Attractive","Bags_Under_Eyes","Bald", "Bangs","Big_Lips","Big_Nose",
            "Black_Hair","Blond_Hair","Blurry","Brown_Hair","Bushy_Eyebrows","Chubby","Double_Chin","Eyeglasses","Goatee",
            "Gray_Hair", "Heavy_Makeup","High_Cheekbones","Male","Mouth_Slightly_Open","Mustache","Narrow_Eyes","No_Beard",
            "Oval_Face","Pale_Skin","Pointy_Nose","Receding_Hairline","Rosy_Cheeks","Sideburns","Smiling","Straight_Hair",
            "Wavy_Hair","Wearing_Earrings","Wearing_Hat","Wearing_Lipstick","Wearing_Necklace","Wearing_Necktie","Young"]
    pred = np.ones(40)
    print("attribution is:")
    for i in range(40):
        print text[i].rjust(20)+" : \t",
        if output[0][i] < 0:
            pred[i] = -1
            print "No"
        else:
            pred[i] = 1
            print "Yes"
Exemple #2
0
def main():
    _, model_args, model_auxs = mx.model.load_checkpoint(
        args.model_prefix, args.epoch)
    symbol = lightened_moon_feature()
    cnt = correct_cnt = 0

    with open(args.test_list, 'r') as f:
        label = np.ones(40)
        pred = np.ones(40)
        for line in f.readlines():
            # get img and label
            line_list = line.strip('\n').split('\t')
            img_name = line_list[-1]
            logging.info("processing {}, the {}th image".format(
                img_name, int(cnt)))
            for label_idx in range(1, 41):
                label[label_idx - 1] = int(line_list[label_idx])
            img = cv2.imread(os.path.join(args.root, img_name), 0) / 255.0
            img = cv2.resize(img, (args.size, args.size))
            img = np.expand_dims(np.expand_dims(img, axis=0), axis=0)
            # get pred
            model_args['data'] = mx.nd.array(img, ctx)
            exector = symbol.bind(ctx,
                                  model_args,
                                  args_grad=None,
                                  grad_req="null",
                                  aux_states=model_auxs)
            exector.forward(is_train=False)
            exector.outputs[0].wait_to_read()
            output = exector.outputs[0].asnumpy()
            for i in range(40):
                if output[0][i] < 0:
                    pred[i] = -1
                else:
                    pred[i] = 1
            correct_cnt += (label == pred).sum()
            cnt += 1.0
        logging.info("acc is:{}".format(correct_cnt / (cnt * 40.0)))
Exemple #3
0
def main():
    symbol = lightened_moon_feature(num_classes=40, use_fuse=True)
    devs = mx.cpu() if args.gpus is None else [
        mx.gpu(int(i)) for i in args.gpus.split(',')
    ]
    _, arg_params, aux_params = mx.model.load_checkpoint(
        args.model_load_prefix, args.model_load_epoch)
    detector = dlib.get_frontal_face_detector()
    face_cascade = cv2.CascadeClassifier(args.opencv)
    # read img and drat face rect
    img = cv2.imread(args.img)
    faces = detector(img, 1)
    gray = np.zeros(img.shape[0:2])
    if len(faces) == 0:
        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        opencv_faces = face_cascade.detectMultiScale(gray, 1.3, 5)
        for (x, y, w, h) in opencv_faces:
            faces.append(dlib.rectangle(int(x), int(y), int(x + w),
                                        int(y + h)))
    max_face = faces[0]
    if len(faces) > 0:
        max_face = max(faces, key=lambda rect: rect.width() * rect.height())
    for f in faces:
        if f == max_face:
            cv2.rectangle(img, (f.left(), f.top()), (f.right(), f.bottom()),
                          (0, 0, 255), 2)
        else:
            cv2.rectangle(img, (f.left(), f.top()), (f.right(), f.bottom()),
                          (255, 0, 0), 2)
    cv2.imwrite(args.img.replace('jpg', 'png'), img)
    # crop face area
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    pad = [0.25, 0.25, 0.25, 0.25] if args.pad is None else args.pad
    left = int(max(0, max_face.left() - max_face.width() * float(pad[0])))
    top = int(max(0, max_face.top() - max_face.height() * float(pad[1])))
    right = int(
        min(gray.shape[1],
            max_face.right() + max_face.width() * float(pad[2])))
    bottom = int(
        min(gray.shape[0],
            max_face.bottom() + max_face.height() * float(pad[3])))
    gray = gray[left:right, top:bottom]
    gray = cv2.resize(gray, (args.size, args.size)) / 255.0
    img = np.expand_dims(np.expand_dims(gray, axis=0), axis=0)
    # get pred
    arg_params['data'] = mx.nd.array(img, devs)
    exector = symbol.bind(devs,
                          arg_params,
                          args_grad=None,
                          grad_req="null",
                          aux_states=aux_params)
    exector.forward(is_train=False)
    exector.outputs[0].wait_to_read()
    output = exector.outputs[0].asnumpy()
    text = [
        "5_o_Clock_Shadow", "Arched_Eyebrows", "Attractive", "Bags_Under_Eyes",
        "Bald", "Bangs", "Big_Lips", "Big_Nose", "Black_Hair", "Blond_Hair",
        "Blurry", "Brown_Hair", "Bushy_Eyebrows", "Chubby", "Double_Chin",
        "Eyeglasses", "Goatee", "Gray_Hair", "Heavy_Makeup", "High_Cheekbones",
        "Male", "Mouth_Slightly_Open", "Mustache", "Narrow_Eyes", "No_Beard",
        "Oval_Face", "Pale_Skin", "Pointy_Nose", "Receding_Hairline",
        "Rosy_Cheeks", "Sideburns", "Smiling", "Straight_Hair", "Wavy_Hair",
        "Wearing_Earrings", "Wearing_Hat", "Wearing_Lipstick",
        "Wearing_Necklace", "Wearing_Necktie", "Young"
    ]
    pred = np.ones(40)
    print("attribution is:")
    for i in range(40):
        print text[i].rjust(20) + " : \t",
        if output[0][i] < 0:
            pred[i] = -1
            print "No"
        else:
            pred[i] = 1
            print "Yes"
Exemple #4
0
def main(args):

    #MOON feature extractor; not sure how to make this a modular component
    symbol = lightened_moon_feature(num_classes=40, use_fuse=True)

    #the detector passed in from the command line; requires files in facenet/data/
    detector = align_dlib.AlignDlib(
        os.path.expanduser(args.dlib_face_predictor))

    landmarkIndices = align_dlib.AlignDlib.OUTER_EYES_AND_NOSE

    if args.landmarkIndices is not None:
        landmarkIndices = args.landmarkIndices

    video = cv2.VideoCapture(args.input_video)

    devs = mx.cpu()

    #begin to iterate over the frames and process them
    ret, frame = video.read()

    #a list of dictionaries containing face_output for each frame
    total_output = []

    #maps encoding matrix to id number
    known_faces_dict = dict()
    known_faces_encoding = []
    id_count = 0

    while ret is True:
        face_boxes = detector.getAllFaceBoundingBoxes(frame)

        id_attr, known_faces_dict, known_faces_encoding, id_count = processFrame(
            args, frame, known_faces_dict, known_faces_encoding, id_count,
            symbol, detector, landmarkIndices, devs, face_boxes)

        total_output.append(id_attr)

        ret, frame = video.read()

    #==========CONVERT TO JSON FILE===============
    print('done processing; converting to json')
    #print(total_output)
    #ith element represents the ith frame
    frame_num = 0
    json_output = '{\r\n"video":\r\n{\r\n"frames":\r\n[\r\n'
    for frame_info in total_output:
        #begin the num-faces entry
        json_output += '{\r\n"num": ' + str(frame_num) + ',\r\n'
        if len(frame_info.keys()) == 0:
            #if this still isnt valid, try doing "faces": 0 and closing the field
            # remove last occurrence of comma
            k = json_output.rfind(',')
            json_output = json_output[:k] + json_output[k + 1:]
            json_output += '},\r\n'  #close the num-faces entry; no faces field
            frame_num += 1
            continue
        json_output += '"faces":\r\n[\r\n'
        # process the face information in frame_info in a loop
        for face in frame_info.keys():
            #get actual content, which is a list
            #content shouldnt ever be empty, because there exists a key
            #TODO may be a bug bc of this assumption
            content = frame_info[face]
            pid = content[0]

            #check if content is length > 1
            #there may be an individual with 0 yes-attributes
            if len(content) == 3:
                #attributes will contain the topleft,bottomright coordinates,
                #followed by the attributes themselves
                attributes = content[1:len(content) - 1]
                attributes.extend(['Negatives'])
                d = {pid: attributes}  #looks like 0:[]
                json_output += json.dumps(d) + ',\r\n'
                continue

            #attributes will contain the topleft, bottomright coordinates
            #followed by the attributes themselves
            attributes = content[1:len(content) - 1]
            d = {pid: attributes}
            #now we have the proper split
            json_output += json.dumps(d) + ',\r\n'
        #outside of loop
        # remove last occurrence of comma
        k = json_output.rfind(',')
        json_output = json_output[:k] + json_output[k + 1:]
        json_output += ']\r\n'  #close the faces array
        json_output += '},\r\n'  #close the num-faces entry
        frame_num += 1
    # remove last occurrence of comma
    k = json_output.rfind(',')
    json_output = json_output[:k] + json_output[k + 1:]
    json_output += '\r\n]\r\n}\r\n}'

    d = json.loads(json_output)
    json_output = json.dumps(d, indent=4, separators=(',', ': '))

    #write out to file
    print('done converting to json; writing to file')
    f = open('output.json', 'wb')
    f.write(json_output)
    f.close()
    print('done!')