Exemple #1
0
def test_kmp_precomputed_dictionary():
    n_samples = mult_dense.shape[0]
    cv = ShuffleSplit(n_samples,
                      n_iterations=1,
                      test_fraction=0.2,
                      random_state=0)
    train, test = list(cv)[0]
    X_train, y_train = mult_dense[train], mult_target[train]
    X_test, y_test = mult_dense[test], mult_target[test]

    components = select_components(X_train, y_train,
                                   n_components=0.3,
                                   random_state=0)
    K_train = pairwise_kernels(X_train, components)

    kmp = KMPClassifier(metric="precomputed")
    kmp.fit(K_train, y_train)
    y_pred = kmp.predict(K_train)
    acc = np.mean(y_pred == y_train)
    assert_true(acc >= 0.75)

    K_test = pairwise_kernels(X_test, components)
    y_pred = kmp.predict(K_test)

    acc = np.mean(y_pred == y_test)
    assert_true(acc >= 0.63)
Exemple #2
0
def test_kmp_fit_multiclass():
    for metric, acc in (("rbf", 0.796),
                        ("linear", 0.803),
                        ("poly", 0.836)):
        kmp = KMPClassifier(n_nonzero_coefs=4.0/5,
                            n_components=0.5,
                            n_refit=10,
                            metric=metric,
                            random_state=0)
        kmp.fit(mult_dense, mult_target)
        y_pred = kmp.predict(mult_dense)
        assert_almost_equal(np.mean(mult_target == y_pred), acc, decimal=2)
Exemple #3
0
def test_kmp_fit_binary_backfitting():
    for metric, acc in (("rbf", 0.723),
                        ("linear", 0.954),
                        ("poly", 0.724)):
        kmp = KMPClassifier(n_nonzero_coefs=1.0,
                            n_components=0.5,
                            n_refit=1,
                            metric=metric,
                            random_state=0)
        kmp.fit(bin_dense, bin_target)
        assert_equal(kmp.components_.shape[1], bin_dense.shape[0] / 2)
        y_pred = kmp.predict(bin_dense)
        assert_almost_equal(np.mean(bin_target == y_pred), acc, decimal=2)
try:
    color = int(sys.argv[1])
except:
    color = True

try:
    surface = int(sys.argv[2])
except:
    surface = False


X1, y1, X2, y2 = gen_non_lin_separable_data()
X_train, y_train = split_train(X1, y1, X2, y2)
X_test, y_test = split_test(X1, y1, X2, y2)

clf = KMPClassifier(n_nonzero_coefs=0.3,
                    n_components=1.0,
                    metric="rbf",
                    gamma=0.1,
                    n_refit=1,
                    estimator=Ridge(alpha=0.01),
                    random_state=random_state)
clf.fit(X_train, y_train)

y_predict = clf.predict(X_test)
correct = np.sum(y_predict == y_test)
print "%d out of %d predictions correct" % (correct, len(y_predict))

plot_contour(X_train, clf, color, surface)