Exemple #1
0
    def get_overall_best_fit(self, pars, **specargs):
        """Returns the overall best-fit, the chi-square and the N.d.o.f."""
        if type(pars) == str: pars = [pars]

        for s, v in enumerate(self.p.get("data_vectors")):

            d = DataManager(self.p, v, self.cosmo, all_data=False)
            self.d = d
            lik = Likelihood(self.p.get('params'),
                             d.data_vector,
                             d.covar,
                             self._th,
                             template=d.templates)
            sam = Sampler(lik.lnprob, lik.p0, lik.p_free_names,
                          self.p.get_sampler_prefix(v['name']),
                          self.p.get('mcmc'))

            sam.get_chain()
            sam.update_p0(sam.chain[np.argmax(sam.probs)])
            kwargs = lik.build_kwargs(sam.p0)

            w = kwargs["width"]
            zz, NN = self._get_dndz(d.tracers[0][0].dndz, w)
            zmean = np.average(zz, weights=NN)
            kwargs["z"] = zmean
            kwargs["chi2"] = lik.chi2(sam.p0)
            all_pars = self.p.p.get("params")
            dof = np.sum(
                [param["vary"] for param in all_pars if "vary" in param])
            kwargs["dof"] = len(lik.dv) - dof
            kwargs["PTE"] = 1 - chi2.cdf(kwargs["chi2"], kwargs["dof"])

            if s == 0:
                keys = ["z", "chi2", "dof", "PTE"] + pars
                OV_BF = {k: kwargs[k] for k in keys}
            else:
                for k in keys:
                    OV_BF[k] = np.vstack((OV_BF[k], kwargs[k]))

        return OV_BF
Exemple #2
0
    if vv['name']==sample:
        v=vv

dat = DataManager(p, v, cosmo, all_data=False)
gat = DataManager(p, v, cosmo, all_data=True)
def th(pars,d):
    if not cosmo_vary:
        cosmo_fid = cosmo
        hmc_fid = hmc
    else:
        cosmo_fid = COSMO_ARGS(kwargs)
        hmc_fid = get_hmcalc(cosmo_fid, **kwargs)
    return get_theory(p, d, cosmo_fid, hmc_fid,
                      hm_correction=hm_correction,
                      selection=None,**pars)
likd = Likelihood(p.get('params'), dat.data_vector, dat.covar, th,
                  template=dat.templates)
likg = Likelihood(p.get('params'), gat.data_vector, gat.covar, th,
                  template=gat.templates)
sam = Sampler(likd.lnprob, likd.p0, likd.p_free_names,
              p.get_sampler_prefix(v['name']), p.get('mcmc'))
sam.get_chain()
sam.update_p0(sam.chain[np.argmax(sam.probs)])
params = likd.build_kwargs(sam.p0)

clth=th(params,gat)[:len(ls)]
l=np.geomspace(ls[0],ls[-1],1024)
clthp=np.exp(interp1d(np.log(ls),np.log(clth),kind='quadratic')(np.log(l)))

# grey boundaries
z, nz = np.loadtxt(dat.tracers[0][0].dndz, unpack=True)
zmean = np.average(z, weights=nz)
Exemple #3
0
    def get_chains(self, pars, **specargs):
        """Returns a dictionary containing the chains of `pars`. """
        def bias_one(p0, num):
            """Calculates the halo model bias for a set of parameters."""
            bb = hm_bias(self.cosmo, 1 / (1 + zarr), d.tracers[num][1].profile,
                         **lik.build_kwargs(p0))
            return bb

        def bias_avg(num, skip):
            """Calculates the halo model bias of a profile, from a chain."""
            #from pathos.multiprocessing import ProcessingPool as Pool
            #with Pool() as pool:
            #    bb = pool.map(lambda p0: bias_one(p0, num),
            #                             sam.chain[::skip])
            bb = list(map(lambda p0: bias_one(p0, num), sam.chain[::skip]))
            bb = np.mean(np.array(bb), axis=1)
            return bb

        # path to chain
        fname = lambda s: self.p.get("global")["output_dir"] + "/sampler_" + \
                          self.p.get("mcmc")["run_name"] + "_" + s + "_chain"

        if type(pars) == str: pars = [pars]
        import os
        print(os.getcwd())
        preCHAINS = {}
        fid_pars = pars.copy()
        for par in pars:
            try:
                print(fname(par))
                preCHAINS[par] = np.load(fname(par) + ".npy")
                fid_pars.remove(par)
                print("Found saved chains for %s." % par)
            except FileNotFoundError:
                continue

        if "bg" or "by" in fid_pars:
            # skip every (for computationally expensive hm_bias)
            b_skip = specargs.get("reduce_by_factor")
            if b_skip is None:
                print("'reduce_by_factor' not given. Defaulting to 100.")
                b_skip = 100

        for s, v in enumerate(self.p.get("data_vectors")):
            d = DataManager(self.p, v, self.cosmo, all_data=False)
            self.d = d
            lik = Likelihood(self.p.get('params'),
                             d.data_vector,
                             d.covar,
                             self._th,
                             template=d.templates)
            sam = Sampler(lik.lnprob, lik.p0, lik.p_free_names,
                          self.p.get_sampler_prefix(v['name']),
                          self.p.get('mcmc'))

            sam.get_chain()
            chains = lik.build_kwargs(sam.chain.T)

            sam.update_p0(sam.chain[np.argmax(sam.probs)])
            kwargs = lik.build_kwargs(sam.p0)
            w = kwargs["width"]
            zz, NN = self._get_dndz(d.tracers[0][0].dndz, w)
            zmean = np.average(zz, weights=NN)
            chains["z"] = zmean

            if "probs" in pars:
                chains["probs"] = sam.probs

            if ("by" or "bg") in fid_pars:
                sigz = np.sqrt(np.sum(NN * (zz - zmean)**2) / np.sum(NN))
                zarr = np.linspace(zmean - sigz, zmean + sigz, 10)
                if "bg" in pars:
                    chains["bg"] = bias_avg(num=0, skip=b_skip)
                if "by" in pars:
                    chains["by"] = bias_avg(num=1, skip=b_skip)

            # Construct tomographic dictionary
            if s == 0:
                keys = ["z"] + fid_pars
                CHAINS = {k: chains[k] for k in keys}
            else:
                for k in keys:
                    CHAINS[k] = np.vstack((CHAINS[k], chains[k]))

        # save bias chains to save time if not already saved
        if "bg" in fid_pars: np.save(fname("bg"), CHAINS["bg"])
        if "by" in fid_pars: np.save(fname("by"), CHAINS["by"])

        return {**preCHAINS, **CHAINS}
Exemple #4
0
# Theory predictor wrapper
def th(kwargs):
    """Theory for free cosmology."""
    cosmo_use = p.get_cosmo(pars=kwargs)  # optimized internally
    return get_theory(p,
                      d,
                      cosmo_use,
                      hmc,
                      hm_correction=hm_correction,
                      **kwargs)


# Set up likelihood
lik = Likelihood(p.get('params'),
                 d.data_vector,
                 d.covar,
                 th,
                 template=d.templates,
                 debug=p.get('mcmc')['debug'])
# Set up sampler
p0 = p.get_map_p0(lik.p_free_names)  # p0 for particular map
sam = Sampler(lik.lnprob, p0, lik.p_free_names,
              p.get_sampler_prefix(v['name']), p.get('mcmc'))

# print(dict(zip(lik.p_free_names, p0)))
# print("chisq:", lik.chi2(p0))
# exit(1)

# Compute best fit and covariance
if not sam.read_properties():
    print(" Computing best-fit and covariance")
    sam.get_best_fit(update_p0=True)
Exemple #5
0
        if not cosmo_vary:
            pars_fid = pars
            cosmo_fid = cosmo
            hmc_fid = hmc
        else:
            pars_fid = {**p.get_cosmo_pars(), **pars}
            cosmo_fid = COSMO_ARGS(pars_fid)
            hmc_fid = get_hmcalc(cosmo_fid, **pars_fid)
        return get_theory(p, d, cosmo_fid, hmc_fid,
                          return_separated=False,
                          hm_correction=None,
                          include_1h=False, include_2h=True,
                          **pars_fid)

    # Set up likelihood
    lik = Likelihood(p.get('params'), d.data_vector, d.covar, th,
                     debug=p.get('mcmc')['debug'])
    # Set up sampler
    sam = Sampler(lik.lnprob, lik.p0, lik.p_free_names,
                  p.get_sampler_prefix(v['name']), p.get('mcmc'))

    # Read chains and best-fit
    sam.get_chain()
    sam.update_p0(sam.chain[np.argmax(sam.probs)])

    # Compute galaxy bias
    # zarr = np.linspace(zmean - sigz, zmean + sigz, 10)
    # bgchain = np.array([hm_bias(cosmo, 1./(1 + zarr), d.tracers[0][0],
    #                   **(lik.build_kwargs(p0))) for p0 in sam.chain[::100]])
    # bychain = np.array([hm_bias(cosmo, 1./(1 + zarr), d.tracers[1][1],
    #                   **(lik.build_kwargs(p0))) for p0 in sam.chain[::100]])
Exemple #6
0
for s, v in enumerate(p.get("data_vectors")):

    # Construct data vector and covariance
    d = DataManager(p, v, cosmo, all_data=False)
    g = DataManager(p, v, cosmo, all_data=True)

    thd = thr(d)
    thg = thr(g)

    z, nz = np.loadtxt(d.tracers[0][0].dndz, unpack=True)
    zmean = np.average(z, weights=nz)

    # Set up likelihood
    likd = Likelihood(p.get('params'),
                      d.data_vector,
                      d.covar,
                      thd.th,
                      template=d.templates)
    likg = Likelihood(p.get('params'),
                      g.data_vector,
                      g.covar,
                      thg.th,
                      template=g.templates)
    # Set up sampler
    sam = Sampler(likd.lnprob, likd.p0, likd.p_free_names,
                  p.get_sampler_prefix(v['name']), p.get('mcmc'))

    # Read chains and best-fit
    sam.get_chain()
    sam.update_p0(sam.chain[np.argmax(sam.probs)])
Exemple #7
0
    def get_chains(self, pars=None, **specargs):
        """Returns a dictionary containing the chains of `pars`. """
        # if `pars` is not set, collect chains for all free parameters
        if pars is None:
            pars = [
                par["name"] for par in self.p.get("params") if par.get("vary")
            ]

        def bias_one(p0, num):
            """Calculates the halo model bias for a set of parameters."""
            if self.cosmo_vary:
                cosmo = COSMO_ARGS(pars)
                hmc = get_hmcalc(
                    cosmo, **{
                        "mass_function": self.p.get_massfunc(),
                        "halo_bias": self.p.get_halobias()
                    })
            else:
                cosmo = self.cosmo
                hmc = self.hmc
            bb = hm_bias(cosmo, hmc, 1 / (1 + zarr), d.tracers[num][1],
                         **lik.build_kwargs(p0))
            return bb

        def bias_avg(num, skip):
            """Calculates the halo model bias of a profile, from a chain."""
            from pathos.multiprocessing import ProcessingPool as Pool
            with Pool() as pool:
                bb = pool.map(lambda p0: bias_one(p0, num), sam.chain[::skip])
            # bb = list(map(lambda p0: bias_one(p0, num), sam.chain[::skip]))
            bb = np.mean(np.array(bb), axis=1)
            return bb

        # path to chain
        fname = lambda s: self.p.get("global")["output_dir"] + "/sampler_" + \
                          self.p.get("mcmc")["run_name"] + "_" + s + "_chain"

        if type(pars) == str: pars = [pars]
        preCHAINS = {}
        fid_pars = pars.copy()
        for par in pars:
            try:
                preCHAINS[par] = np.load(fname(par) + ".npy")
                fid_pars.remove(par)
                print("Found saved chains for %s." % par)
            except FileNotFoundError:
                continue

        if ("bg" in fid_pars) or ("by" in fid_pars) or ("bk" in fid_pars):
            # thin sample (for computationally expensive hm_bias)
            b_skip = specargs.get("thin")
            if b_skip is None:
                print("Chain 'thin' factor not given. Defaulting to 100.")
                b_skip = 100

        for s, v in enumerate(self.p.get("data_vectors")):
            print(v["name"])
            d = DataManager(self.p, v, all_data=False)
            self.d = d
            lik = Likelihood(self.p.get('params'),
                             d.data_vector,
                             d.covar,
                             self._th,
                             template=d.templates)
            sam = Sampler(lik.lnprob, lik.p0, lik.p_free_names,
                          self.p.get_sampler_prefix(v['name']),
                          self.p.get('mcmc'))

            sam.get_chain()
            chains = lik.build_kwargs(sam.chain.T)

            sam.update_p0(sam.chain[np.argmax(sam.probs)])
            # print(sam.p0)
            kwargs = lik.build_kwargs(sam.p0)
            w = kwargs["width"]
            zz, NN = self._get_dndz(d.tracers[0][0].dndz, w)
            zmean = np.average(zz, weights=NN)
            chains["z"] = zmean

            if "probs" in pars:
                chains["probs"] = sam.probs

            if ("bg" in fid_pars) or ("by" in fid_pars) or ("bk" in fid_pars):
                sigz = np.sqrt(np.sum(NN * (zz - zmean)**2) / np.sum(NN))
                zarr = np.linspace(zmean - sigz, zmean + sigz, 10)
                if "bg" in pars:
                    chains["bg"] = bias_avg(num=0, skip=b_skip)
                if "by" in pars:
                    chains["by"] = bias_avg(num=1, skip=b_skip)
                if "bk" in pars:
                    chains["bk"] = bias_avg(num=2, skip=b_skip)

            # Construct tomographic dictionary
            if s == 0:
                keys = ["z"] + fid_pars
                CHAINS = {k: [chains[k]] for k in keys}
            else:
                for k in keys:
                    CHAINS[k].append(chains[k])

        # save bias chains to save time if not already saved
        if "bg" in fid_pars: np.save(fname("bg"), CHAINS["bg"])
        if "by" in fid_pars: np.save(fname("by"), CHAINS["by"])
        if "bk" in fid_pars: np.save(fname("bk"), CHAINS["bk"])

        return {**preCHAINS, **CHAINS}
Exemple #8
0
    # Construct data vector and covariance
    d = DataManager(p, v, cosmo, jk_region=jk_region)

    # Theory predictor wrapper
    def th(pars):
        return get_theory(p,
                          d,
                          cosmo,
                          hm_correction=hm_correction,
                          selection=sel,
                          **pars)

    # Set up likelihood
    lik = Likelihood(p.get('params'),
                     d.data_vector,
                     d.covar,
                     th,
                     template=d.templates,
                     debug=p.get('mcmc')['debug'])

    # Set up sampler
    sam = Sampler(lik.lnprob, lik.p0, lik.p_free_names,
                  p.get_sampler_prefix(v['name']) + "jk%d" % jk_region,
                  p.get('mcmc'))

    # Compute best fit and covariance around it
    if not sam.read_properties():
        print(" Computing best-fit and covariance")
        sam.get_best_fit(update_p0=True)
        cov0 = sam.get_covariance(update_cov=True)
        sam.save_properties()
Exemple #9
0
    def th2h(pars):
        return get_theory(p,
                          d,
                          cosmo,
                          return_separated=False,
                          hm_correction=hm_correction,
                          selection=sel,
                          include_2h=True,
                          include_1h=False,
                          **pars)

    # Set up likelihood
    lik = Likelihood(p.get('params'),
                     d.data_vector,
                     d.covar,
                     th,
                     debug=p.get('mcmc')['debug'])

    # Set up sampler
    sam = Sampler(lik.lnprob, lik.p0, lik.p_free_names,
                  p.get_sampler_prefix(v['name']), p.get('mcmc'))

    # Read chains and best-fit
    sam.get_chain()
    sam.update_p0(sam.chain[np.argmax(sam.probs)])

    # Compute galaxy bias
    zarr = np.linspace(zmean - sigz, zmean + sigz, 10)
    bgchain = np.array([
        hm_bias(cosmo, 1. / (1 + zarr), d.tracers[0][0].profile,
Exemple #10
0
    hm_correction = None
for v in p.get('data_vectors'):
    if v['name'] == bin_name:
        d = DataManager(p, v, cosmo)
        z, nz = np.loadtxt(d.tracers[0][0].dndz, unpack=True)
        zmean = np.average(z, weights=nz)
        sigz = np.sqrt(np.sum(nz * (z - zmean)**2) / np.sum(nz))

        # Theory predictor wrapper
        def th(pars):
            return get_theory(p,
                              d,
                              cosmo,
                              return_separated=False,
                              hm_correction=hm_correction,
                              selection=sel,
                              **pars)

        lik = Likelihood(p.get('params'),
                         d.data_vector,
                         d.covar,
                         th,
                         debug=p.get('mcmc')['debug'])
        sam = Sampler(lik.lnprob, lik.p0, lik.p_free_names,
                      p.get_sampler_prefix(v['name']), p.get('mcmc'))
        sam.get_chain()
        figs_ch = lik.plot_chain(sam.chain,
                                 save_figure=True,
                                 prefix='notes/paper/')
plt.show()