def handle(self, *args, **options):
     path = options.get('path')
     try:
         result = self.predict.file(path)
         print(json_dumps(result))
     except:
         pass
 def handle(self, *args, **options):
     path = options.get('path')
     name = options.get('name')
     if os.path.isfile(path):
         result = self.datasets.upload(path=path, name=name)
         print(json_dumps(result))
     else:
         print('File does not exist')
Exemple #3
0
 def handle(self, *args, **options):
     path = options.get('path')
     label = options.get('label')
     model = options.get('model')
     if os.path.isfile(path):
         result = self.datasets.feedback(path=path,
                                         label=label,
                                         model_id=model)
         print(json_dumps(result))
     else:
         print('File does not exist')
Exemple #4
0
 def handle(self, *args, **options):
     datasets_id = options.get('datasets_id')
     name = options.get('name')
     result = self.train.create(datasets_id=datasets_id, name=name)
     print(json_dumps(result))
 def handle(self, *args, **options):
     model_id = options.get('model_id')
     result = self.models.lc(model_id)
     print(json_dumps(result))
 def handle(self, *args, **options):
     datasets_id = options.get('datasets')
     result = self.datasets.get_feedback(datasets_id=datasets_id)
     print(json_dumps(result))
Exemple #7
0
 def handle(self, *args, **options):
     model_id = options.get('model_id')
     result = self.train.confirm(model_id)
     print(json_dumps(result))
 def handle(self, *args, **options):
     path = options.get('path')
     datasets = options.get('datasets')
     result = self.datasets.put(datasets_id=datasets, path=path)
     print(json_dumps(result))