def handle(self, *args, **options): path = options.get('path') try: result = self.predict.file(path) print(json_dumps(result)) except: pass
def handle(self, *args, **options): path = options.get('path') name = options.get('name') if os.path.isfile(path): result = self.datasets.upload(path=path, name=name) print(json_dumps(result)) else: print('File does not exist')
def handle(self, *args, **options): path = options.get('path') label = options.get('label') model = options.get('model') if os.path.isfile(path): result = self.datasets.feedback(path=path, label=label, model_id=model) print(json_dumps(result)) else: print('File does not exist')
def handle(self, *args, **options): datasets_id = options.get('datasets_id') name = options.get('name') result = self.train.create(datasets_id=datasets_id, name=name) print(json_dumps(result))
def handle(self, *args, **options): model_id = options.get('model_id') result = self.models.lc(model_id) print(json_dumps(result))
def handle(self, *args, **options): datasets_id = options.get('datasets') result = self.datasets.get_feedback(datasets_id=datasets_id) print(json_dumps(result))
def handle(self, *args, **options): model_id = options.get('model_id') result = self.train.confirm(model_id) print(json_dumps(result))
def handle(self, *args, **options): path = options.get('path') datasets = options.get('datasets') result = self.datasets.put(datasets_id=datasets, path=path) print(json_dumps(result))