Exemple #1
0
def softmax_with_cross_entropy(preds, target_index):
    """
    Computes softmax and cross-entropy loss for model predictions,
    including the gradient

    Arguments:
      preds: np array, shape is either (N) or (batch_size, N) -
        classifier output
      target_index: np array of int, shape is (1) or (batch_size) -
        index of the true class for given sample(s)

    Returns:
      loss, single value - cross-entropy loss
      d_preds, np array same shape as predictions - gradient of predictions by loss value
    """
    # TODO_: Copy from the previous assignment
    # raise Exception("Not implemented!")
    preds = preds.copy()

    probs = softmax(preds)

    loss = cross_entropy_loss(probs, target_index).mean()

    mask = np.zeros_like(preds)
    mask[np.arange(len(mask)), target_index] = 1
    # mask[target_index] = 1

    d_preds = - (mask - softmax(preds)) / mask.shape[0]

    return loss, d_preds
Exemple #2
0
    def predict(self, X):
        # You can probably copy the code from previous assignment
        # raise Exception("Not implemented!")
        out = self.conv1.forward(X)
        out = self.relu1.forward(out)
        out = self.maxpool1.forward(out)
        out = self.conv2.forward(out)
        out = self.relu2.forward(out)
        out = self.maxpool2.forward(out)
        out = self.flatten.forward(out)
        out = self.fc.forward(out)
        probs = softmax(out)
        y_pred = np.argmax(probs, axis=1)

        return y_pred
Exemple #3
0
 def test_cross_entropy_loss(self):
     f = cross_entropy_loss
     num_classes = 4
     batch_size = 5
     probs = softmax(np.random.randint(-100, 100,
                                       (batch_size, num_classes)))
     targets = np.random.randint(0,
                                 num_classes - 1, (batch_size, ),
                                 dtype=np.int)
     sum = 0
     for i in range(batch_size):
         sum += f(probs[i], targets[i])
     print(sum / batch_size, f(probs, targets))
     output = f(probs, targets)
     self.assertEqual(sum / batch_size, output)
     self.assertIsInstance(output, float)
Exemple #4
0
    def predict(self, X):
        """
        Produces classifier predictions on the set

        Arguments:
          X, np array (test_samples, num_features)

        Returns:
          y_pred, np.array of int (test_samples)
        """
        # TODO: Implement predict
        # Hint: some of the code of the compute_loss_and_gradients
        # can be reused
        y_pred = np.zeros(X.shape[0], np.int)
        predictions = self.forward_pass(X)
        pred = lc.softmax(predictions)
        #print (pred.shape)
        y_pred = np.argmax(pred, axis=1)

        #raise Exception("Not implemented!")
        return y_pred
Exemple #5
0
    def predict(self, X):
        """
        Produces classifier predictions on the set

        Arguments:
          X, np array (test_samples, num_features)

        Returns:
          y_pred, np.array of int (test_samples)
        """
        # TODO: Implement predict
        # Hint: some of the code of the compute_loss_and_gradients
        # can be reused
        pred = np.zeros(X.shape[0], np.int)

        #raise Exception("Not implemented!")
        X1 = self.Dense1.forward(X)
        X_relu = self.Relu.forward(X1)
        X2 = self.Dense2.forward(X_relu)
        probs = softmax(X2)
        pred = np.argmax(probs, axis=1)

        return pred
Exemple #6
0
    def predict(self, X):
        """
        Produces classifier predictions on the set

        Arguments:
          X, np array (test_samples, num_features)

        Returns:
          y_pred, np.array of int (test_samples)
        """
        # TODO_: Implement predict
        # Hint: some of the code of the compute_loss_and_gradients
        # can be reused
        y_pred = np.zeros(X.shape[0], np.int)

        # raise Exception("Not implemented!")

        out1 = self.layer1.forward(X)
        out_relu = self.relu_layer.forward(out1)
        predictions = self.layer2.forward(out_relu)
        probs = softmax(predictions)
        y_pred = np.argmax(probs, axis=1)

        return y_pred
Exemple #7
0
# $$
# \sigma(z)_j = \frac{e^{z_j}}{\displaystyle\sum_{k=1}^K e^{z_k}}
# $$
#
# **Важно:** Практический аспект вычисления этой функции заключается в том, что в ней учавствует вычисление экспоненты от потенциально очень больших чисел - это может привести к очень большим значениям в числителе и знаменателе за пределами диапазона float.
#
# К счастью, у этой проблемы есть простое решение -- перед вычислением softmax вычесть из всех оценок максимальное значение среди всех оценок:
# ```
# predictions -= np.max(predictions)
# ```
# ([подробнее здесь](http://cs231n.github.io/linear-classify/#softmax), секция `Practical issues: Numeric stability`)

#%%
from linear_classifer import softmax

probs = softmax(np.array([[-10, 0, 10]]))
assert np.isclose(np.sum(probs), 1.0)

# Make sure it works for big numbers too!
probs = softmax(np.array([[1000, 0, 0]]))

assert np.isclose(probs[0][0], 1.0)

#%% [markdown]
# Кроме этого, мы реализуем cross-entropy loss, которую мы будем использовать как функцию ошибки (error function).
# В общем виде cross-entropy определена следующим образом:
#
# $$
# H(p,q) = -\displaystyle\sum_x p(x)\,\log q(x).
# $$
#
Exemple #8
0

def array_sum(x):
    assert x.shape == (2, ), x.shape
    return np.sum(x), np.ones_like(x)


check_gradient(array_sum, np.array([3.0, 2.0]))


def array_2d_sum(x):
    assert x.shape == (2, 2)
    return np.sum(x), np.ones_like(x)


check_gradient(array_2d_sum, np.array([[3.0, 2.0], [1.0, 0.0]]))

# TODO Implement softmax and cross-entropy for single sample
probs = linear_classifer.softmax(np.array([-10, 0, 10]))

# Make sure it works for big numbers too!
probs = linear_classifer.softmax(np.array([1000, 0, 0]))
assert np.isclose(probs[0], 1.0)

# My test batch softmax
probs = linear_classifer.softmax(
    np.array([[-10, 0, 10], [30, 4, 5], [2, 6, 8]]))

probs = linear_classifer.softmax(np.array([-5, 0, 5]))
linear_classifer.cross_entropy_loss(probs, 1)
Exemple #9
0
    return np.sum(x), np.ones_like(x)


check_gradient(array_sum, np.array([3.0, 2.0]))


def array_2d_sum(x):
    assert x.shape == (2, 2)
    return np.sum(x), np.ones_like(x)


check_gradient(array_2d_sum, np.array([[3.0, 2.0], [1.0, 0.0]]))


# TODO Implement softmax and cross-entropy for single sample
probs = linear_classifer.softmax(np.array([-10, 0, 10]))

# Make sure it works for big numbers too!
probs = linear_classifer.softmax(np.array([1000, 0, 0]))
assert np.isclose(probs[0], 1.0)


probs = linear_classifer.softmax(np.array([-5, 0, 5]))
print(linear_classifer.cross_entropy_loss(probs, 1))


loss, grad = linear_classifer.softmax_with_cross_entropy(
    np.array([1, 0, 0]), 1
)
check_gradient(
    lambda x: linear_classifer.softmax_with_cross_entropy(x, 1),