def test__quo(self): ring = PolyRing('x,y,z', True) ring.ext_num_field('t^2 + t + 1') ring.ext_num_field('t^3 + t + a0 + 3') pol1 = ring.coerce('(x+1)*(x^2+a0+1)') pol2 = ring.coerce('(x+1)') assert str(pol1) == 'x^3 + x^2 + (a0 + 1)*x + a0 + 1' q = ring.quo(pol1, pol2) assert str(q) == 'x^2 + a0 + 1'
def test__resultant(self): ring = PolyRing('x,y,z', True) ring.ext_num_field('t^2 + t + 1') ring.ext_num_field('t^3 + t + a0 + 3') pol1 = ring.coerce('(x+1)*(x^2+a0+1)') pol2 = ring.coerce('x^5 + x + a0 + 3') x = ring.coerce('x') r = ring.resultant(pol1, pol2, x) assert str(r) == '7*a0 + 2'
def test__factor(self): ring = PolyRing('x,y,z', True) ring.ext_num_field('t^2 + t + 1') ring.ext_num_field('t^3 + t + a0 + 3') pol = ring.coerce('(x+1)*(x^2+a0+1)') assert str(pol) == 'x^3 + x^2 + (a0 + 1)*x + a0 + 1' assert str(sage_factor(pol)) == '(x + 1) * (x + a0) * (x - a0)' con = ring.coerce('a0') assert str(sage_factor(con)) == 'a0'
def test__diff__2(self): ring = PolyRing('x,y,v,w', True) ring.ext_num_field('t^2 + 1') x, y, v, w, a0 = ring.coerce('x,y,v,w,a0') assert ring.diff(x**3 - a0, x, 3) == 6
def test__diff__1(self): ring = PolyRing('x,y,v,w', True) ring.ext_num_field('t^2 + 1') x, y, v, w, a0 = ring.coerce('x,y,v,w,a0') assert ring.diff(w - a0, w, 1) == 1
def test__diff__3(self): ring = PolyRing('x,y,v,w', True) ring.ext_num_field('t^2 + 1') x, y, v, w, a0 = ring.coerce('x,y,v,w,a0') d1 = ring.diff(y**2 * x**3 - a0, x, 2) d2 = ring.diff(d1, y, 2) assert d1 == 6 * y**2 * x assert d2 == 12 * x
def test__get_implicit_image(self): pmz_lst = [ 'x^2*v^2 - y^2*w^2', 'x^2*v*w + y^2*v*w', 'x^2*w^2 + y^2*w^2', 'x*y*v^2 - y^2*v*w', 'x*y*v*w - y^2*w^2', 'y^2*v*w + x*y*w^2', 'y^2*v^2 + y^2*w^2' ] ls = LinearSeries(pmz_lst, PolyRing('x,y,v,w', True)) imp_lst = ls.get_implicit_image() # test whether "pmz_lst" substituted in "imp_lst" vanishes # ring = PolyRing('x0,x1,x2,x3,x4,x5,x6,x,y,v,w', True) x_lst = ring.coerce('x0,x1,x2,x3,x4,x5,x6') p_lst = [ring.coerce(pmz) for pmz in pmz_lst] e_lst = ring.coerce(imp_lst) dct = {x_lst[i]: p_lst[i] for i in range(len(p_lst))} r_lst = [e.subs(dct) for e in e_lst] assert set(r_lst) == {0}
def test__translate_to_origin( self ): ring = PolyRing( 'x,y,z', True ) ring.ext_num_field( 't^2 + 1' ) ring.ext_num_field( 't^3 + a0' ) ls = LinearSeries( ['y^2', 'y*x'], ring ) xls = ls.copy().chart( ['x'] ) a0, a1 = ring.coerce( 'a0,a1' ) xls.translate_to_origin( ( a0 + 1, a1 + a0 ) ) assert str( xls ) == '{ 2, <<y^2 + (2*a0 + 2)*y + 2*a0, y + a0 + 1>>, QQ( <a0|t^2 + 1>, <a1|t^2 + a0*t - 1> )[y, z] }'
def usecase__roman_circles(): ''' We compute circles on a Roman surface. ''' # parametrization of the Roman surface # p_lst = '[ z^2+x^2+y^2, -z*x, -x*y, z*y ]' # we consider the stereographic projection from # S^3 = { x in P^4 | -x0^2+x1^2+x2^2+x3^2+x4^2 = 0 } # where the center of projection is (1:0:0:0:1): # (x0:x1:x2:x3:x4) |---> (x0-x4:x1:x2:x3) # inverse stereographic projection into 3-sphere # s_lst = '[ y0^2+y1^2+y2^2+y3^2, 2*y0*y1, 2*y0*y2, 2*y0*y3, -y0^2+y1^2+y2^2+y3^2 ]' # compose p_lst with s_lst # ring = PolyRing('x,y,z,y0,y1,y2,y3') x, y, z, y0, y1, y2, y3 = ring.gens() p_lst = ring.coerce(p_lst) s_lst = ring.coerce(s_lst) dct = {y0: p_lst[0], y1: p_lst[1], y2: p_lst[2], y3: p_lst[3]} sp_lst = [s.subs(dct) for s in s_lst] NSTools.p('sp_lst =') for sp in sp_lst: NSTools.p('\t\t', sage_factor(sp)) NSTools.p('gcd(sp_lst) =', sage_gcd(sp_lst)) # determine base points # ring = PolyRing('x,y,z', True) sp_lst = ring.coerce(sp_lst) ls = LinearSeries(sp_lst, ring) NSTools.p(ls.get_bp_tree()) # We expect that the basepoints come from the intersection # of the Roman surface with the absolute conic: # A = { (y0:y1:y2:y3) in P^3 | y0=y1^2+y2^2+y3^2 = 0 } # # Circles are the image via p_lst of lines that pass through # complex conjugate points. # ring = PolyRing('x,y,z', False) # reinitialize ring with updated numberfield a0, a1, a2, a3 = ring.root_gens() # a0=(1-I*sqrt(3)) with conjugate a0-1 and minimal polynomial t^2-t+1 # we compute candidate classes of circles # h = Div.new('4e0-e1-e2-e3-e4-e5-e6-e7-e8') div_lst = get_divs(h, 2, -2, False) + get_divs(h, 2, -1, False) NSTools.p('Classes of circles up to permutation:') for c in div_lst: NSTools.p('\t\t', c) # We recover the preimages of circles in the Roman surface # under the map p_lst, by constructing for each candidate # class the corresponding linear series. # 2e0-e1-e2-e3-e4-e5-e6-e7-e8 b = [(a0 - 1, -a0), (-a0, a0 - 1)] b += [(-a0 + 1, a0), (a0, -a0 + 1)] b += [(a0 - 1, a0), (-a0, -a0 + 1)] b += [(-a0 + 1, -a0), (a0, a0 - 1)] bp_tree = BasePointTree() for i in range(6): bp_tree.add('z', b[i], 1) NSTools.p('basepoints =', b) NSTools.p(LinearSeries.get([2], bp_tree)) # e0-e1-e2 b = [(a0 - 1, -a0), (-a0, a0 - 1)] bp_tree = BasePointTree() bp = bp_tree.add('z', b[0], 1) bp = bp_tree.add('z', b[1], 1) NSTools.p('basepoints =', b) NSTools.p(LinearSeries.get([1], bp_tree)) # e0-e3-e4 b = [(-a0 + 1, a0), (a0, -a0 + 1)] bp_tree = BasePointTree() bp = bp_tree.add('z', b[0], 1) bp = bp_tree.add('z', b[1], 1) NSTools.p('basepoints =', b) NSTools.p(LinearSeries.get([1], bp_tree)) # e0-e5-e6 b = [(a0 - 1, a0), (-a0, -a0 + 1)] bp_tree = BasePointTree() bp = bp_tree.add('z', b[0], 1) bp = bp_tree.add('z', b[1], 1) NSTools.p('basepoints =', b) NSTools.p(LinearSeries.get([1], bp_tree)) # e0-e7-e8 b = [(-a0 + 1, -a0), (a0, a0 - 1)] bp_tree = BasePointTree() bp = bp_tree.add('z', b[0], 1) bp = bp_tree.add('z', b[1], 1) NSTools.p('basepoints =', b) NSTools.p(LinearSeries.get([1], bp_tree)) return
def CH1_cyclide(): ''' Creates povray image of a CH1 cyclide, which is an inversion of a Circular Hyperboloid of 1 sheet. ''' # Construct a trigonometric parametrization by rotating a circle. r, R = 1, 1 c0, s0, c1, s1 = sage_var('c0,s0,c1,s1') x, y, v, w, a0 = sage_var('x,y,v,w,a0') q2 = sage_QQ(1) / 2 MX = sage_matrix([(1, 0, 0), (0, c1, s1), (0, -s1, c1)]) MXc = MX.subs({c1: a0, s1: a0}) # a0=1/sqrt(2)=cos(pi/4)=sin(pi/4) MZ = sage_matrix([(c1, s1, 0), (-s1, c1, 0), (0, 0, 1)]) V = sage_vector([r * c0, 0, r * s0]) V = MXc * V V[0] = V[0] + R pmz_AB_lst = list(MZ * V) OrbTools.p('V =', V) OrbTools.p('pmz_AB_lst =', pmz_AB_lst) for pmz in pmz_AB_lst: OrbTools.p('\t\t', sage_factor(pmz)) # Convert the trigonometric parametrization to a rational parametrization # We convert via the following formulas, # # cos(s) = (y^2-x^2) / (y^2+x^2) # sin(s) = 2*x*y / (y^2+x^2) # y=1; x = arctan( s/2 ) # C0 = (y**2 - x**2) / (y**2 + x**2) S0 = 2 * x * y / (y**2 + x**2) C1 = (w**2 - v**2) / (w**2 + v**2) S1 = 2 * v * w / (w**2 + v**2) den = (y**2 + x**2) * (w**2 + v**2) dct = {c0: C0, s0: S0, c1: C1, s1: S1} pmz_lst = [den] + [(elt.subs(dct) * den).simplify_full() for elt in list(MZ * V)] OrbTools.p('pmz_lst =', pmz_lst) for pmz in pmz_lst: OrbTools.p('\t\t', sage_factor(pmz)) # do a basepoint analysis on the rational parametrization # The True argument is for resetting the number field to QQ! ring = PolyRing('x,y,v,w', True).ext_num_field('t^2-1/2') ls = LinearSeries([str(pmz) for pmz in pmz_lst], ring) OrbTools.p(ls.get_bp_tree()) # construct linear series for families of conics ring = PolyRing( 'x,y,v,w') # construct polynomial ring over new ground field OrbTools.p(ring) x, y, v, w = ring.gens() a0, a1 = ring.root_gens() p1 = ['xv', (0, 2 * a0 * a1)] p2 = ['xv', (0, -2 * a0 * a1)] p3 = ['xv', (a1, 2 * a0 * a1)] p4 = ['xv', (-a1, -2 * a0 * a1)] bpt_1234 = BasePointTree(['xv', 'xw', 'yv', 'yw']) bpt_1234.add(p1[0], p1[1], 1) bpt_1234.add(p2[0], p2[1], 1) bpt_1234.add(p3[0], p3[1], 1) bpt_1234.add(p4[0], p4[1], 1) bpt_12 = BasePointTree(['xv', 'xw', 'yv', 'yw']) bpt_12.add(p1[0], p1[1], 1) bpt_12.add(p2[0], p2[1], 1) bpt_34 = BasePointTree(['xv', 'xw', 'yv', 'yw']) bpt_34.add(p3[0], p3[1], 1) bpt_34.add(p4[0], p4[1], 1) ls_22 = LinearSeries.get([2, 2], bpt_1234) # |2(l1+l2)-e1-e2-e3-e4| ls_21 = LinearSeries.get([2, 1], bpt_1234) ls_12 = LinearSeries.get([1, 2], bpt_1234) ls_11a = LinearSeries.get([1, 1], bpt_12) ls_11b = LinearSeries.get([1, 1], bpt_34) OrbTools.p('linear series 22 =\n', ls_22) OrbTools.p('linear series 21 =\n', ls_21) OrbTools.p('linear series 12 =\n', ls_12) OrbTools.p('linear series 11a =\n', ls_11a) OrbTools.p('linear series 11b =\n', ls_11b) # compute reparametrization from the linear series of families ring = PolyRing( 'x,y,v,w,c0,s0,c1,s1') # construct polynomial ring with new generators OrbTools.p(ring) x, y, v, w, c0, s0, c1, s1 = ring.gens() a0, a1 = ring.root_gens() pmz_AB_lst = [1] + ring.coerce(pmz_AB_lst) pmz_lst = ring.coerce(pmz_lst) X = 1 - s0 Y = c0 V = 1 - s1 W = c1 CB_dct = { x: X, y: Y, v: W * X - 2 * a0 * V * Y, w: V * X + 2 * a0 * W * Y } pmz_CB_lst = [pmz.subs(CB_dct) for pmz in pmz_lst] # CB 11b # output OrbTools.p('pmz_AB_lst =\n', pmz_AB_lst) OrbTools.p('pmz_CB_lst =\n', pmz_CB_lst) # approximate by map defined over rational numbers ci_idx = 0 # index defining the complex embedding OrbTools.p('complex embeddings =') for i in range(len(a0.complex_embeddings())): a0q = OrbRing.approx_QQ_coef(a0, i) OrbTools.p('\t\t' + str(i) + ' =', a0q, sage_n(a0q)) pmz_AB_lst = OrbRing.approx_QQ_pol_lst(pmz_AB_lst, ci_idx) pmz_CB_lst = OrbRing.approx_QQ_pol_lst(pmz_CB_lst, ci_idx) # mathematica input ms = '' for pmz, AB in [(pmz_lst, 'ZZ'), (pmz_AB_lst, 'AB'), (pmz_CB_lst, 'CB')]: s = 'pmz' + AB + '=' + str(pmz) + ';' s = s.replace('[', '{').replace(']', '}') ms += '\n' + s OrbTools.p('Mathematica input =', ms) # PovInput ring cyclide # pin = PovInput() pin.path = './' + get_time_str() + '_CH1_cyclide/' pin.fname = 'orb' pin.scale = 1 pin.cam_dct['location'] = (0, -5, 0) pin.cam_dct['lookat'] = (0, 0, 0) pin.cam_dct['rotate'] = (20, 0, 0) pin.shadow = True pin.light_lst = [(1, 0, 0), (0, 1, 0), (0, 0, 1), (-1, 0, 0), (0, -1, 0), (0, 0, -1), (10, 0, 0), (0, 10, 0), (0, 0, 10), (-10, 0, 0), (0, -10, 0), (0, 0, -10)] pin.axes_dct['show'] = False pin.axes_dct['len'] = 1.2 pin.height = 400 pin.width = 800 pin.quality = 11 pin.ani_delay = 10 pin.impl = None pin.pmz_dct['A'] = (pmz_AB_lst, 0) pin.pmz_dct['B'] = (pmz_AB_lst, 1) pin.pmz_dct['C'] = (pmz_CB_lst, 0) pin.pmz_dct['FA'] = (pmz_AB_lst, 0) pin.pmz_dct['FB'] = (pmz_AB_lst, 1) pin.pmz_dct['FC'] = (pmz_CB_lst, 0) v0_lst = [(sage_QQ(i) / 180) * sage_pi for i in range(0, 360, 10)] v1_lst_A = [(sage_QQ(i) / 180) * sage_pi for i in range(180, 360, 10)] v1_lst_B = [(sage_QQ(i) / 180) * sage_pi for i in range(0, 180, 10)] v1_lst_C = [(sage_QQ(i) / 180) * sage_pi for i in range(0, 180, 10)] v1_lst_FA = [(sage_QQ(i) / 180) * sage_pi for i in range(180, 360, 2)] v1_lst_FB = [(sage_QQ(i) / 180) * sage_pi for i in range(0, 180, 2)] v1_lst_FC = [(sage_QQ(i) / 180) * sage_pi for i in range(0, 180, 2)] prec = 50 pin.curve_dct['A'] = { 'step0': v0_lst, 'step1': v1_lst_A, 'prec': prec, 'width': 0.03 } pin.curve_dct['B'] = { 'step0': v0_lst, 'step1': v1_lst_B, 'prec': prec, 'width': 0.03 } pin.curve_dct['C'] = { 'step0': v0_lst, 'step1': v1_lst_C, 'prec': prec, 'width': 0.03 } pin.curve_dct['FA'] = { 'step0': v0_lst, 'step1': v1_lst_FA, 'prec': prec, 'width': 0.02 } pin.curve_dct['FB'] = { 'step0': v0_lst, 'step1': v1_lst_FB, 'prec': prec, 'width': 0.02 } pin.curve_dct['FC'] = { 'step0': v0_lst, 'step1': v1_lst_FC, 'prec': prec, 'width': 0.02 } col_A = (0.6, 0.4, 0.1, 0.0) col_B = (0.1, 0.15, 0.0, 0.0) col_C = (0.2, 0.3, 0.2, 0.0) colFF = (0.1, 0.1, 0.1, 0.0) pin.text_dct['A'] = [True, col_A, 'phong 0.2 phong_size 5'] pin.text_dct['B'] = [True, col_B, 'phong 0.2 phong_size 5'] pin.text_dct['C'] = [True, col_C, 'phong 0.2 phong_size 5'] pin.text_dct['FA'] = [True, colFF, 'phong 0.2 phong_size 5'] pin.text_dct['FB'] = [True, colFF, 'phong 0.2 phong_size 5'] pin.text_dct['FC'] = [True, colFF, 'phong 0.2 phong_size 5'] # raytrace image/animation create_pov(pin, ['A', 'B', 'C']) create_pov(pin, ['A', 'B', 'C', 'FA', 'FB', 'FC']) create_pov(pin, ['A', 'B', 'FA', 'FB']) create_pov(pin, ['B', 'C', 'FA', 'FB'])
def dp6_smooth(): ''' Creates povray image of the projection of a smooth sextic del Pezzo surface in S^5. This surface contains 3 families of conics that form a hexagonal web. ''' # compute parametrizations of canonical model a0 = PolyRing('x,y,v,w', True).ext_num_field('t^2 + 1').root_gens()[0] bp_tree = BasePointTree(['xv', 'xw', 'yv', 'yw']) bp = bp_tree.add('xv', (-a0, a0), 1) bp = bp_tree.add('xv', (a0, -a0), 1) ls_AB = LinearSeries.get([2, 2], bp_tree) ls_CB = LinearSeries.get([1, 1], bp_tree) # compute surface in quadric of signature (6,1) c_lst = [-1, -1, 0, 0, 0, -1, 1, 0, -1, -1, -1] dct = get_surf(ls_AB, (6, 1), c_lst) # compute projection to P^3 U, J = dct['UJ'] U.swap_rows(0, 6) J.swap_columns(0, 6) J.swap_rows(0, 6) approxU = approx_QQ(U) P = get_prj_mat(4, 7, 0) P[0, 6] = -1 P[3, 3] = 0 P[3, 4] = 1 P = P * approxU f_xyz, pmz_AB_lst = get_proj(dct['imp_lst'], dct['pmz_lst'], P) # compute reparametrization ring = PolyRing( 'x,y,v,w,c0,s0,c1,s1') # construct polynomial ring with new generators x, y, v, w, c0, s0, c1, s1 = ring.gens() X = 1 - s0 Y = c0 # see get_S1xS1_pmz() V = 1 - s1 W = c1 CB_dct = {x: X, y: Y, v: X * W + Y * V, w: X * V - Y * W} pmz_CB_lst = [p.subs(CB_dct) for p in ring.coerce(ls_AB.pol_lst)] pmz_CB_lst = list(P * dct['Q'] * sage_vector(pmz_CB_lst)) # set PovInput as container # put very low quality for testing purposes pin = PovInput() pin.path = './' + get_time_str() + '_dp6_smooth/' pin.fname = 'orb' pin.scale = 1 pin.cam_dct['location'] = (0, 0, sage_QQ(-21) / 10) pin.cam_dct['lookat'] = (0, 0, 0) pin.cam_dct['rotate'] = (310, 0, 0) pin.shadow = True pin.light_lst = [(0, 0, -4), (0, -4, 0), (-4, 0, 0), (0, 4, 0), (4, 0, 0), (-5, -5, -5), (5, 5, -5), (-5, 5, -5), (5, -5, -5)] pin.axes_dct['show'] = False pin.axes_dct['len'] = 1.2 pin.height = 400 pin.width = 800 pin.quality = 11 pin.ani_delay = 1 pin.impl = None v0_lst = [(sage_QQ(i) / 180) * sage_pi for i in range(0, 360, 10)] v1_lst = [(sage_QQ(i) / 180) * sage_pi for i in range(0, 360, 15)] v1_F_lst = [(sage_QQ(i) / 180) * sage_pi for i in range(0, 360, 1)] pin.pmz_dct['A'] = (pmz_AB_lst, 0) pin.pmz_dct['B'] = (pmz_AB_lst, 1) pin.pmz_dct['C'] = (pmz_CB_lst, 0) pin.pmz_dct['FA'] = (pmz_AB_lst, 0) pin.pmz_dct['FB'] = (pmz_AB_lst, 1) pin.pmz_dct['FC'] = (pmz_CB_lst, 0) pin.curve_dct['A'] = { 'step0': v0_lst, 'step1': v1_lst, 'prec': 10, 'width': 0.018 } pin.curve_dct['B'] = { 'step0': v0_lst, 'step1': v1_lst, 'prec': 10, 'width': 0.018 } pin.curve_dct['C'] = { 'step0': v0_lst, 'step1': v1_lst, 'prec': 10, 'width': 0.018 } pin.curve_dct['FA'] = { 'step0': v0_lst, 'step1': v1_F_lst, 'prec': 10, 'width': 0.003 } pin.curve_dct['FB'] = { 'step0': v0_lst, 'step1': v1_F_lst, 'prec': 10, 'width': 0.003 } pin.curve_dct['FC'] = { 'step0': v0_lst, 'step1': v1_F_lst, 'prec': 10, 'width': 0.003 } # ( 0.4, 0.0, 0.0, 0.0 ), ( 0.2, 0.3, 0.2, 0.0 ), ( 0.8, 0.6, 0.2, 0.0 ) col_A = rgbt2pov((75, 102, 0, 0)) # green / col_B = rgbt2pov((74, 33, 0, 0)) # brown - col_C = rgbt2pov((28, 125, 154, 0)) # blue \ colFF = rgbt2pov((179, 200, 217, 0)) # light blue pin.text_dct['A'] = [True, col_A, 'phong 0.2'] pin.text_dct['B'] = [True, col_B, 'phong 0.2'] pin.text_dct['C'] = [True, col_C, 'phong 0.2'] pin.text_dct['FA'] = [True, colFF, 'phong 0.8'] pin.text_dct['FB'] = [True, colFF, 'phong 0.8'] pin.text_dct['FC'] = [True, colFF, 'phong 0.8'] # raytrace image/animation create_pov(pin, ['A', 'B', 'C']) create_pov(pin, ['A', 'B', 'C', 'FA', 'FB', 'FC']) create_pov(pin, ['A', 'FA', 'FB', 'FC']) create_pov(pin, ['B', 'FA', 'FB', 'FC']) create_pov(pin, ['C', 'FA', 'FB', 'FC'])
def perseus_cyclide(): ''' Creates povray image of the Perseus cyclide. ''' # We first construct a trigonometric parametrization # by rotating a circle. # cos(pi/3) = 1/2 # sin(pi/3) = sqrt(3)/2 # r, R = 1, 2 c0, s0, c1, s1 = sage_var('c0,s0,c1,s1') x, y, v, w, a0 = sage_var('x,y,v,w,a0') q2 = sage_QQ(1) / 2 MZ = sage_matrix([(c1, s1, 0), (-s1, c1, 0), (0, 0, 1)]) MZc = MZ.subs({c1: q2, s1: q2 * a0}) V = sage_vector([r * c0, 0, r * s0]) V = MZc * V V[0] = V[0] + R pmz_AB_lst = list(MZ * V) OrbTools.p('V =', V) OrbTools.p('pmz_AB_lst =', pmz_AB_lst) for pmz in pmz_AB_lst: OrbTools.p('\t\t', sage_factor(pmz)) # We convert the trigonometric parametrization to a # rational parametrization, via the following formulas: # # cos(s) = (y^2-x^2) / (y^2+x^2) # sin(s) = 2*x*y / (y^2+x^2) # y=1; x = arctan( s/2 ) # C0 = (y**2 - x**2) / (y**2 + x**2) S0 = 2 * x * y / (y**2 + x**2) C1 = (w**2 - v**2) / (w**2 + v**2) S1 = 2 * v * w / (w**2 + v**2) den = (y**2 + x**2) * (w**2 + v**2) dct = {c0: C0, s0: S0, c1: C1, s1: S1} pmz_lst = [den] + [(elt.subs(dct) * den).simplify_full() for elt in list(MZ * V)] OrbTools.p('pmz_lst =', pmz_lst) for pmz in pmz_lst: OrbTools.p('\t\t', sage_factor(pmz)) # do a basepoint analysis on the rational parametrization # ring = PolyRing('x,y,v,w', True).ext_num_field('t^2-3') ls = LinearSeries([str(pmz) for pmz in pmz_lst], ring) OrbTools.p(ls.get_bp_tree()) # construct linear series for families of conics # ring = PolyRing( 'x,y,v,w') # construct polynomial ring over new ground field OrbTools.p(ring) x, y, v, w = ring.gens() a0, a1, a2, a3 = ring.root_gens() p1 = ['xv', (-a3, a1)] p2 = ['xv', (-a2, -a1)] p3 = ['xv', (a3, a1)] p4 = ['xv', (a2, -a1)] bpt_1234 = BasePointTree(['xv', 'xw', 'yv', 'yw']) bpt_1234.add(p1[0], p1[1], 1) bpt_1234.add(p2[0], p2[1], 1) bpt_1234.add(p3[0], p3[1], 1) bpt_1234.add(p4[0], p4[1], 1) bpt_12 = BasePointTree(['xv', 'xw', 'yv', 'yw']) bpt_12.add(p1[0], p1[1], 1) bpt_12.add(p2[0], p2[1], 1) bpt_34 = BasePointTree(['xv', 'xw', 'yv', 'yw']) bpt_34.add(p3[0], p3[1], 1) bpt_34.add(p4[0], p4[1], 1) ls_22 = LinearSeries.get([2, 2], bpt_1234) ls_21 = LinearSeries.get([2, 1], bpt_1234) ls_12 = LinearSeries.get([1, 2], bpt_1234) ls_11a = LinearSeries.get([1, 1], bpt_12) ls_11b = LinearSeries.get([1, 1], bpt_34) OrbTools.p('linear series 22 =\n', ls_22) OrbTools.p('linear series 21 =\n', ls_21) OrbTools.p('linear series 12 =\n', ls_12) OrbTools.p('linear series 11a =\n', ls_11a) OrbTools.p('linear series 11b =\n', ls_11b) # compute reparametrization from the linear series of families ring = PolyRing('x,y,v,w,c0,s0,c1,s1') OrbTools.p(ring) x, y, v, w, c0, s0, c1, s1 = ring.gens() a0, a1, a2, a3 = ring.root_gens() pmz_AB_lst = [1] + ring.coerce(pmz_AB_lst) pmz_lst = ring.coerce(pmz_lst) q2 = sage_QQ(1) / 2 a = 2 * a0 / 3 b = (-a0 * a1 / 3 - q2) * a3 c = (a0 * a1 / 3 - q2) * a2 d = (a1 / 2 - a0 / 3) * a3 e = (-a1 / 2 - a0 / 3) * a2 bc = b + c de = d + e X = 1 - s0 Y = c0 V = 1 - s1 W = c1 CB_dct = { x: X, y: Y, v: W * X + bc * W * Y - de * V * Y, w: V * X + bc * V * Y + de * W * Y } DB_dct = { x: X, y: Y, v: W * X - bc * W * Y + de * V * Y, w: V * X - bc * V * Y - de * W * Y } EB_dct = { x: X, y: Y, v: W * X**2 + W * Y**2 - a * V * Y**2, w: V * X**2 + V * Y**2 + a * W * Y**2 } pmz_CB_lst = [pmz.subs(CB_dct) for pmz in pmz_lst] # CB 11a pmz_DB_lst = [pmz.subs(DB_dct) for pmz in pmz_lst] # CB 11b pmz_EB_lst = [pmz.subs(EB_dct) for pmz in pmz_lst] # CB 21 # output OrbTools.p('pmz_AB_lst =\n', pmz_AB_lst) OrbTools.p('pmz_CB_lst =\n', pmz_CB_lst) OrbTools.p('pmz_DB_lst =\n', pmz_DB_lst) OrbTools.p('pmz_EB_lst =\n', pmz_EB_lst) # approximate by map defined over rational numbers ci_idx = 5 # index defining the complex embedding pmz_AB_lst = OrbRing.approx_QQ_pol_lst(pmz_AB_lst, ci_idx) pmz_CB_lst = OrbRing.approx_QQ_pol_lst(pmz_CB_lst, ci_idx) pmz_DB_lst = OrbRing.approx_QQ_pol_lst(pmz_DB_lst, ci_idx) pmz_EB_lst = OrbRing.approx_QQ_pol_lst(pmz_EB_lst, ci_idx) # mathematica input ms = '' for pmz, AB in [(pmz_lst, 'ZZ'), (pmz_AB_lst, 'AB'), (pmz_CB_lst, 'CB'), (pmz_DB_lst, 'DB'), (pmz_EB_lst, 'EB')]: s = 'pmz' + AB + '=' + str(pmz) + ';' s = s.replace('[', '{').replace(']', '}') ms += '\n' + s OrbTools.p('Mathematica input =', ms) # PovInput ring cyclide # pin = PovInput() pin.path = './' + get_time_str() + '_perseus_cyclide/' pin.fname = 'orb' pin.scale = 1 pin.cam_dct['location'] = (0, 7, 0) pin.cam_dct['lookat'] = (0, 0, 0) pin.cam_dct['rotate'] = (45, 0, 0) pin.shadow = True pin.light_lst = [(0, 0, -10), (0, -10, 0), (-10, 0, 0), (0, 0, 10), (0, 10, 0), (10, 0, 0)] pin.axes_dct['show'] = False pin.axes_dct['len'] = 1.2 pin.height = 400 pin.width = 800 pin.quality = 11 pin.ani_delay = 10 pin.impl = None pin.pmz_dct['A'] = (pmz_AB_lst, 0) pin.pmz_dct['B'] = (pmz_AB_lst, 1) pin.pmz_dct['C'] = (pmz_CB_lst, 0) pin.pmz_dct['D'] = (pmz_DB_lst, 0) pin.pmz_dct['E'] = (pmz_EB_lst, 0) pin.pmz_dct['FA'] = (pmz_AB_lst, 0) pin.pmz_dct['FB'] = (pmz_AB_lst, 1) pin.pmz_dct['FC'] = (pmz_CB_lst, 0) pin.pmz_dct['FD'] = (pmz_DB_lst, 0) pin.pmz_dct['FE'] = (pmz_EB_lst, 0) v0_lst = [(sage_QQ(i) / 180) * sage_pi for i in range(0, 360, 10)] v1_lst_A = [(sage_QQ(i) / 180) * sage_pi for i in range(0, 360, 10)] # 5 v1_lst_B = [(sage_QQ(i) / 180) * sage_pi for i in range(0, 360, 15)] v1_lst_C = [(sage_QQ(i) / 180) * sage_pi for i in range(0, 360, 36)] v1_lst_D = [(sage_QQ(i) / 180) * sage_pi for i in range(0, 360, 36)] v1_lst_E = [(sage_QQ(i) / 180) * sage_pi for i in range(0, 360, 10)] # 5 v1_lst_F = [(sage_QQ(i) / 180) * sage_pi for i in range(0, 360, 1)] prec = 50 pin.curve_dct['A'] = { 'step0': v0_lst, 'step1': v1_lst_A, 'prec': prec, 'width': 0.04 } pin.curve_dct['B'] = { 'step0': v0_lst, 'step1': v1_lst_B, 'prec': prec, 'width': 0.04 } pin.curve_dct['C'] = { 'step0': v0_lst, 'step1': v1_lst_C, 'prec': prec, 'width': 0.05 } pin.curve_dct['D'] = { 'step0': v0_lst, 'step1': v1_lst_D, 'prec': prec, 'width': 0.05 } pin.curve_dct['E'] = { 'step0': v0_lst, 'step1': v1_lst_E, 'prec': prec, 'width': 0.04 } pin.curve_dct['FA'] = { 'step0': v0_lst, 'step1': v1_lst_F, 'prec': prec, 'width': 0.01 } pin.curve_dct['FB'] = { 'step0': v0_lst, 'step1': v1_lst_F, 'prec': prec, 'width': 0.01 } pin.curve_dct['FC'] = { 'step0': v0_lst, 'step1': v1_lst_F, 'prec': prec, 'width': 0.01 } pin.curve_dct['FD'] = { 'step0': v0_lst, 'step1': v1_lst_F, 'prec': prec, 'width': 0.01 } pin.curve_dct['FE'] = { 'step0': v0_lst, 'step1': v1_lst_F, 'prec': prec, 'width': 0.01 } col_A = (0.6, 0.0, 0.0, 0.0) # red col_B = (0.8, 0.6, 0.2, 0.0) # beige col_C = (0.6, 0.0, 0.0, 0.0 ) # red *** rgbt2pov( ( 74, 33, 0, 0 ) ) # brown col_D = (0.2, 0.6, 0.0, 0.0 ) # green *** rgbt2pov( ( 28, 125, 154, 0 ) ) # blue col_E = (0.2, 0.6, 0.0, 0.0) # green colFF = (0.1, 0.1, 0.1, 0.0) pin.text_dct['A'] = [True, col_A, 'phong 0.2 phong_size 5'] pin.text_dct['B'] = [True, col_B, 'phong 0.2 phong_size 5'] pin.text_dct['C'] = [True, col_C, 'phong 0.2 phong_size 5'] pin.text_dct['D'] = [True, col_D, 'phong 0.2 phong_size 5'] pin.text_dct['E'] = [True, col_E, 'phong 0.2 phong_size 5'] pin.text_dct['FA'] = [True, colFF, 'phong 0.2 phong_size 5'] pin.text_dct['FB'] = [True, colFF, 'phong 0.2 phong_size 5'] pin.text_dct['FC'] = [True, colFF, 'phong 0.2 phong_size 5'] pin.text_dct['FD'] = [True, colFF, 'phong 0.2 phong_size 5'] pin.text_dct['FE'] = [True, colFF, 'phong 0.2 phong_size 5'] # raytrace image/animation create_pov(pin, ['C', 'D', 'FC', 'FD']) create_pov(pin, ['A', 'B', 'FC', 'FD']) create_pov(pin, ['E', 'B', 'FC', 'FD'])
def blum_cyclide(): ''' Construct a povray image of 6 families of circles on a smooth Darboux cyclide. This surface is also known as the Blum cyclide. ''' # construct dct a0 = PolyRing( 'x,y,v,w', True ).ext_num_field( 't^2 + 1' ).root_gens()[0] # i bpt_1234 = BasePointTree( ['xv', 'xw', 'yv', 'yw'] ) bpt_1234.add( 'xv', ( -1 * a0, 1 * a0 ), 1 ) # e1 bpt_1234.add( 'xv', ( 1 * a0, -1 * a0 ), 1 ) # e2 bpt_1234.add( 'xw', ( -2 * a0, 2 * a0 ), 1 ) # e3 bpt_1234.add( 'xw', ( 2 * a0, -2 * a0 ), 1 ) # e4 bpt_12 = BasePointTree( ['xv', 'xw', 'yv', 'yw'] ) bpt_12.add( 'xv', ( -1 * a0, 1 * a0 ), 1 ) # e1 bpt_12.add( 'xv', ( 1 * a0, -1 * a0 ), 1 ) # e2 bpt_34 = BasePointTree( ['xv', 'xw', 'yv', 'yw'] ) bpt_34.add( 'xw', ( -2 * a0, 2 * a0 ), 1 ) # e3 bpt_34.add( 'xw', ( 2 * a0, -2 * a0 ), 1 ) # e4 ls_22 = LinearSeries.get( [2, 2], bpt_1234 ) # |2(l1+l2)-e1-e2-e3-e4| ls_21 = LinearSeries.get( [2, 1], bpt_1234 ) ls_12 = LinearSeries.get( [1, 2], bpt_1234 ) ls_11a = LinearSeries.get( [1, 1], bpt_12 ) ls_11b = LinearSeries.get( [1, 1], bpt_34 ) OrbTools.p( 'linear series 22 =\n', ls_22 ) OrbTools.p( 'linear series 21 =\n', ls_21 ) OrbTools.p( 'linear series 12 =\n', ls_12 ) OrbTools.p( 'linear series 11a =\n', ls_11a ) OrbTools.p( 'linear series 11b =\n', ls_11b ) sig = ( 4, 1 ) pol_lst = ls_22.get_implicit_image() # determine signature x_lst = sage_PolynomialRing( sage_QQ, [ 'x' + str( i ) for i in range( sum( sig ) )] ).gens() for pol in pol_lst: if pol.degree() == 2: M = sage_invariant_theory.quadratic_form( pol, x_lst ).as_QuadraticForm().matrix() D, V = sage_matrix( sage_QQ, M ).eigenmatrix_right() # D has first all negative values on diagonal cur_sig = ( len( [ d for d in D.diagonal() if d < 0 ] ), len( [ d for d in D.diagonal() if d > 0 ] ) ) else: cur_sig = '[no signature]' OrbTools.p( '\t\t', pol, cur_sig ) # obtain surface in sphere coef_lst = [0, -1, -1] dct = get_surf( ls_22, sig, coef_lst ) # construct projection matrix P U, J = dct['UJ'] U.swap_rows( 0, 4 ) J.swap_columns( 0, 4 ) J.swap_rows( 0, 4 ) assert dct['M'] == approx_QQ( U.T * J * U ) approxU = approx_QQ( U ) P = sage_identity_matrix( 5 ).submatrix( 0, 0, 4, 5 ) P[0, 4] = -1; P = P * approxU OrbTools.p( ' approx_QQ( U ) =', list( approx_QQ( U ) ) ) OrbTools.p( ' approx_QQ( J ) =', list( approx_QQ( J ) ) ) OrbTools.p( ' P =', list( P ) ) # call get_proj f_xyz, pmz_AB_lst = get_proj( dct['imp_lst'], dct['pmz_lst'], P ) f_xyz_deg_lst = [f_xyz.degree( sage_var( v ) ) for v in ['x', 'y', 'z']] # compute reparametrization ring = PolyRing( 'x,y,v,w,c0,s0,c1,s1' ) # construct polynomial ring with new generators p_lst = ring.coerce( ls_22.pol_lst ) x, y, v, w, c0, s0, c1, s1 = ring.gens() X = 1 - s0; Y = c0; # see get_S1xS1_pmz() V = 1 - s1; W = c1; CB_dct = { x:X, y:Y, v:X * W + Y * V, w: X * V - Y * W } DB_dct = { x:X, y:Y, v:4 * X * W - Y * V, w: X * V + Y * W } EB_dct = { x:X, y:Y, v:40 * W * X ** 2 + 25 * W * Y ** 2 + 24 * V * X * Y, w:40 * V * X ** 2 + 16 * V * Y ** 2 - 15 * W * X * Y } AF_dct = { x:-10 * Y * V ** 2 - 25 * Y * W ** 2 + 9 * X * V * W, y:15 * X * V ** 2 + 24 * X * W ** 2 - 15 * Y * V * W, v:V, w:W } pmz_CB_lst = list( P * sage_vector( [ p.subs( CB_dct ) for p in p_lst] ) ) pmz_DB_lst = list( P * sage_vector( [ p.subs( DB_dct ) for p in p_lst] ) ) pmz_EB_lst = list( P * sage_vector( [ p.subs( EB_dct ) for p in p_lst] ) ) pmz_AF_lst = list( P * sage_vector( [ p.subs( AF_dct ) for p in p_lst] ) ) # output OrbTools.p( 'f_xyz =', f_xyz_deg_lst, '\n', f_xyz ) OrbTools.p( 'pmz_AB_lst =\n', pmz_AB_lst ) OrbTools.p( 'pmz_CB_lst =\n', pmz_CB_lst ) OrbTools.p( 'pmz_DB_lst =\n', pmz_DB_lst ) OrbTools.p( 'pmz_EB_lst =\n', pmz_EB_lst ) OrbTools.p( 'pmz_AF_lst =\n', pmz_AF_lst ) # mathematica pmz_lst = [ ( pmz_AB_lst, 'AB' ), ( pmz_CB_lst, 'CB' ), ( pmz_DB_lst, 'DB' ), ( pmz_EB_lst, 'EB' ), ( pmz_AF_lst, 'AF' )] OrbTools.p( 'Mathematica input for ParametricPlot3D:' ) for pmz, AB in pmz_lst: s = 'pmz' + AB + '=' + str( pmz ) s = s.replace( '[', '{' ).replace( ']', '}' ) print( s ) # PovInput for Blum cyclide # pin = PovInput() pin.path = './' + get_time_str() + '_blum_cyclide/' pin.fname = 'orb' pin.scale = 1 pin.cam_dct['location'] = ( 0, -7, 0 ) pin.cam_dct['lookat'] = ( 0, 0, 0 ) pin.cam_dct['rotate'] = ( 20, 180, 20 ) pin.shadow = True pin.light_lst = [( 0, 0, -5 ), ( 0, -5, 0 ), ( -5, 0, 0 ), ( 0, 0, 5 ), ( 0, 5, 0 ), ( 5, 0, 0 ), ( -5, -5, -5 ), ( 5, -5, 5 ), ( -5, -5, 5 ), ( 5, -5, -5 ) ] pin.axes_dct['show'] = False pin.axes_dct['len'] = 1.2 pin.height = 400 pin.width = 800 pin.quality = 11 pin.ani_delay = 10 pin.impl = None start0 = sage_QQ( 1 ) / 10 # step0=10 step1=15 v0_lst = [ start0 + ( sage_QQ( i ) / 180 ) * sage_pi for i in range( 0, 360, 10 )] v1_lst = [ ( sage_QQ( i ) / 180 ) * sage_pi for i in range( 0, 360, 15 )] v1_lst_F = [ start0 + ( sage_QQ( i ) / 360 ) * sage_pi for i in range( 0, 720, 1 )] v1_lst_WE = [1.8, 2.3, 2.7, 3.1, 3.5, 3.8, 4.134, 4.31, 4.532, 4.7, 4.9, 5.08, 5.25, 5.405, 5.553, 5.7, 5.84] v1_lst_WF = [1.69, 1.87, 2.07, 2.26, 2.5, 2.72, 2.96, 3.2, 3.42, 3.65, 3.81] v1_lst_WD = [ 5.44, 5.56, 5.68, 5.81, 5.95, 6.1, 6.27, 6.474] # [5.01, 5.12, 5.22, 5.32, v1_lst_SA = [6.5]; v1_lst_SE = [5.4]; v1_lst_SB = [5.95]; v1_lst_SF = [2.28]; v1_lst_SC = [4.83]; v1_lst_SD = [5.55]; pin.pmz_dct['A'] = ( pmz_AB_lst, 0 ) pin.pmz_dct['B'] = ( pmz_AB_lst, 1 ) pin.pmz_dct['C'] = ( pmz_CB_lst, 0 ) pin.pmz_dct['D'] = ( pmz_DB_lst, 0 ) pin.pmz_dct['E'] = ( pmz_EB_lst, 0 ) pin.pmz_dct['F'] = ( pmz_AF_lst, 1 ) pin.pmz_dct['WD'] = ( pmz_DB_lst, 0 ) pin.pmz_dct['WE'] = ( pmz_EB_lst, 0 ) pin.pmz_dct['WF'] = ( pmz_AF_lst, 1 ) pin.pmz_dct['SA'] = ( pmz_AB_lst, 0 ) pin.pmz_dct['SB'] = ( pmz_AB_lst, 1 ) pin.pmz_dct['SC'] = ( pmz_CB_lst, 0 ) pin.pmz_dct['SD'] = ( pmz_DB_lst, 0 ) pin.pmz_dct['SE'] = ( pmz_EB_lst, 0 ) pin.pmz_dct['SF'] = ( pmz_AF_lst, 1 ) pin.pmz_dct['FA'] = ( pmz_AB_lst, 0 ) pin.pmz_dct['FB'] = ( pmz_AB_lst, 1 ) pin.pmz_dct['FC'] = ( pmz_CB_lst, 0 ) pin.pmz_dct['FD'] = ( pmz_DB_lst, 0 ) pin.pmz_dct['FE'] = ( pmz_EB_lst, 0 ) pin.pmz_dct['FF'] = ( pmz_AF_lst, 1 ) pin.curve_dct['A'] = {'step0':v0_lst, 'step1':v1_lst, 'prec':10, 'width':0.05} pin.curve_dct['B'] = {'step0':v0_lst, 'step1':v1_lst, 'prec':10, 'width':0.05} pin.curve_dct['C'] = {'step0':v0_lst, 'step1':v1_lst, 'prec':10, 'width':0.05} pin.curve_dct['D'] = {'step0':v0_lst, 'step1':v1_lst, 'prec':10, 'width':0.05} pin.curve_dct['E'] = {'step0':v0_lst, 'step1':v1_lst, 'prec':10, 'width':0.05} pin.curve_dct['F'] = {'step0':v0_lst, 'step1':v1_lst, 'prec':10, 'width':0.05} pin.curve_dct['WD'] = {'step0':v0_lst, 'step1':v1_lst_WD, 'prec':10, 'width':0.05} pin.curve_dct['WE'] = {'step0':v0_lst, 'step1':v1_lst_WE, 'prec':10, 'width':0.05} pin.curve_dct['WF'] = {'step0':v0_lst, 'step1':v1_lst_WF, 'prec':10, 'width':0.05} pin.curve_dct['SA'] = {'step0':v0_lst, 'step1':v1_lst_SA, 'prec':10, 'width':0.05} pin.curve_dct['SB'] = {'step0':v0_lst, 'step1':v1_lst_SB, 'prec':10, 'width':0.05} pin.curve_dct['SC'] = {'step0':v0_lst, 'step1':v1_lst_SC, 'prec':10, 'width':0.05} pin.curve_dct['SD'] = {'step0':v0_lst, 'step1':v1_lst_SD, 'prec':10, 'width':0.06} pin.curve_dct['SE'] = {'step0':v0_lst, 'step1':v1_lst_SE, 'prec':10, 'width':0.05} pin.curve_dct['SF'] = {'step0':v0_lst, 'step1':v1_lst_SF, 'prec':10, 'width':0.05} pin.curve_dct['FA'] = {'step0':v0_lst, 'step1':v1_lst_F, 'prec':10, 'width':0.01} pin.curve_dct['FB'] = {'step0':v0_lst, 'step1':v1_lst_F, 'prec':10, 'width':0.01} pin.curve_dct['FC'] = {'step0':v0_lst, 'step1':v1_lst_F, 'prec':10, 'width':0.01} pin.curve_dct['FD'] = {'step0':v0_lst, 'step1':v1_lst_F, 'prec':10, 'width':0.01} pin.curve_dct['FE'] = {'step0':v0_lst, 'step1':v1_lst_F, 'prec':10, 'width':0.01} pin.curve_dct['FF'] = {'step0':v0_lst, 'step1':v1_lst_F, 'prec':10, 'width':0.01} col_A = rgbt2pov( ( 28, 125, 154, 0 ) ) # blue col_B = rgbt2pov( ( 74, 33, 0, 0 ) ) # brown col_C = rgbt2pov( ( 75, 102, 0, 0 ) ) # green col_E = col_A col_F = col_B col_D = col_C colFF = rgbt2pov( ( 179, 200, 217, 0 ) ) # light blue pin.text_dct['A'] = [True, col_A, 'phong 0.2' ] pin.text_dct['B'] = [True, col_B, 'phong 0.2' ] pin.text_dct['C'] = [True, col_C, 'phong 0.2' ] pin.text_dct['E'] = [True, col_E, 'phong 0.2' ] pin.text_dct['F'] = [True, col_F, 'phong 0.2' ] pin.text_dct['D'] = [True, col_D, 'phong 0.2' ] pin.text_dct['WE'] = [True, col_E, 'phong 0.2' ] pin.text_dct['WF'] = [True, col_F, 'phong 0.2' ] pin.text_dct['WD'] = [True, col_D, 'phong 0.2' ] pin.text_dct['SA'] = [True, col_A, 'phong 0.2' ] pin.text_dct['SB'] = [True, col_B, 'phong 0.2' ] pin.text_dct['SC'] = [True, col_C, 'phong 0.2' ] pin.text_dct['SE'] = [True, col_E, 'phong 0.2' ] pin.text_dct['SF'] = [True, col_F, 'phong 0.2' ] pin.text_dct['SD'] = [True, col_D, 'phong 0.2' ] pin.text_dct['FA'] = [True, colFF, 'phong 0.2' ] pin.text_dct['FB'] = [True, colFF, 'phong 0.2' ] pin.text_dct['FC'] = [True, colFF, 'phong 0.2' ] pin.text_dct['FE'] = [True, colFF, 'phong 0.2' ] pin.text_dct['FF'] = [True, colFF, 'phong 0.2' ] pin.text_dct['FD'] = [True, colFF, 'phong 0.2' ] # raytrace image/animation F_lst = ['FA', 'FB', 'FC'] S_lst = ['SA', 'SB', 'SC', 'SD', 'SE', 'SF'] create_pov( pin, ['A', 'B', 'C'] ) create_pov( pin, ['A', 'B', 'C'] + F_lst ) create_pov( pin, ['WD', 'WE', 'WF'] ) create_pov( pin, ['WD', 'WE', 'WF'] + F_lst ) create_pov( pin, S_lst + F_lst ) # ABC - EFD create_pov( pin, ['A', 'B'] + F_lst ) create_pov( pin, ['E', 'F'] + F_lst )
def ring_cyclide(): ''' Creates povray image of 4 families of circles on a ring cyclide. ''' # We construct a trigonometric parametrization of the ring cyclide, # by rotating a circle of radius r along a circle of radius R. R = 2 r = 1 x, y, v, w, c0, s0, c1, s1 = sage_var('x,y,v,w,c0,s0,c1,s1') V = sage_vector([r * c0 + R, 0, r * s0]) M = sage_matrix([(c1, -s1, 0), (s1, c1, 0), (0, 0, 1)]) pmz_AB_lst = [1] + list(M * V) OrbTools.p('pmz_AB_lst =', pmz_AB_lst) for pmz in pmz_AB_lst: OrbTools.p('\t\t', sage_factor(pmz)) # convert pmz_AB_lst to rational parametrization pmz_lst C0 = (y**2 - x**2) / (y**2 + x**2) S0 = 2 * x * y / (y**2 + x**2) C1 = (w**2 - v**2) / (w**2 + v**2) S1 = 2 * v * w / (w**2 + v**2) den = (y**2 + x**2) * (w**2 + v**2) dct = {c0: C0, s0: S0, c1: C1, s1: S1} pmz_lst = [den] + [(elt.subs(dct) * den).simplify_full() for elt in list(M * V)] OrbTools.p('pmz_lst =', pmz_lst) # find basepoints ls = LinearSeries(pmz_lst, PolyRing('x,y,v,w', True)) OrbTools.p(ls.get_bp_tree()) # construct linear series for families of conics a0, a1 = PolyRing('x,y,v,w').ext_num_field('t^2+1/3').ext_num_field( 't^2+1').root_gens() p1 = ['xv', (-a0, a1)] p2 = ['xv', (a0, -a1)] p3 = ['xv', (-a0, -a1)] p4 = ['xv', (a0, a1)] bpt_1234 = BasePointTree(['xv', 'xw', 'yv', 'yw']) bpt_1234.add(p1[0], p1[1], 1) bpt_1234.add(p2[0], p2[1], 1) bpt_1234.add(p3[0], p3[1], 1) bpt_1234.add(p4[0], p4[1], 1) bpt_12 = BasePointTree(['xv', 'xw', 'yv', 'yw']) bpt_12.add(p1[0], p1[1], 1) bpt_12.add(p2[0], p2[1], 1) bpt_34 = BasePointTree(['xv', 'xw', 'yv', 'yw']) bpt_34.add(p3[0], p3[1], 1) bpt_34.add(p4[0], p4[1], 1) ls_22 = LinearSeries.get([2, 2], bpt_1234) # |2(l1+l2)-e1-e2-e3-e4| ls_21 = LinearSeries.get([2, 1], bpt_1234) ls_12 = LinearSeries.get([1, 2], bpt_1234) ls_11a = LinearSeries.get([1, 1], bpt_12) ls_11b = LinearSeries.get([1, 1], bpt_34) OrbTools.p('linear series 22 =\n', ls_22) OrbTools.p('linear series 21 =\n', ls_21) OrbTools.p('linear series 12 =\n', ls_12) OrbTools.p('linear series 11a =\n', ls_11a) OrbTools.p('linear series 11b =\n', ls_11b) # compute reparametrization ring = PolyRing( 'x,y,v,w,c0,s0,c1,s1') # construct polynomial ring with new generators pmz_lst = ring.coerce(pmz_lst) x, y, v, w, c0, s0, c1, s1 = ring.gens() X = 1 - s0 Y = c0 # see get_S1xS1_pmz() V = 1 - s1 W = c1 q = sage_n(sage_sqrt(3)).exact_rational() # approximation of sqrt(3) CB_dct = {x: X, y: Y, v: W * X + q * V * Y, w: V * X - q * W * Y} DB_dct = {x: X, y: Y, v: W * X - q * V * Y, w: V * X + q * W * Y} pmz_CB_lst = [pmz.subs(CB_dct) for pmz in pmz_lst] pmz_DB_lst = [pmz.subs(DB_dct) for pmz in pmz_lst] # output OrbTools.p('pmz_AB_lst =\n', pmz_AB_lst) OrbTools.p('pmz_CB_lst =\n', pmz_CB_lst) OrbTools.p('pmz_DB_lst =\n', pmz_DB_lst) # mathematica for pmz, AB in [(pmz_AB_lst, 'AB'), (pmz_CB_lst, 'CB'), (pmz_DB_lst, 'DB')]: s = 'pmz' + AB + '=' + str(pmz) + ';' s = s.replace('[', '{').replace(']', '}') print(s) # PovInput ring cyclide # pin = PovInput() pin.path = './' + get_time_str() + '_ring_cyclide/' pin.fname = 'orb' pin.scale = 1 pin.cam_dct['location'] = (0, -7, 0) pin.cam_dct['lookat'] = (0, 0, 0) pin.cam_dct['rotate'] = (55, 0, 0) # 45 pin.shadow = True pin.light_lst = [(0, 0, -5), (0, -5, 0), (-5, 0, 0), (0, 0, 5), (0, 5, 0), (5, 0, 0), (-5, -5, -5), (5, -5, 5), (-5, -5, 5), (5, -5, -5)] pin.axes_dct['show'] = False pin.axes_dct['len'] = 1.2 pin.width = 800 pin.height = 400 pin.quality = 11 pin.ani_delay = 10 pin.impl = None pin.pmz_dct['A'] = (pmz_AB_lst, 0) pin.pmz_dct['B'] = (pmz_AB_lst, 1) pin.pmz_dct['C'] = (pmz_CB_lst, 0) pin.pmz_dct['D'] = (pmz_DB_lst, 0) pin.pmz_dct['FA'] = (pmz_AB_lst, 0) pin.pmz_dct['FB'] = (pmz_AB_lst, 1) pin.pmz_dct['FC'] = (pmz_CB_lst, 0) pin.pmz_dct['FD'] = (pmz_DB_lst, 0) pin.pmz_dct['WA'] = (pmz_AB_lst, 0) pin.pmz_dct['WB'] = (pmz_AB_lst, 1) pin.pmz_dct['WC'] = (pmz_CB_lst, 0) pin.pmz_dct['WD'] = (pmz_DB_lst, 0) v0_lst = [(sage_QQ(i) / 180) * sage_pi for i in range(0, 360, 10)] v1_lst = [(sage_QQ(i) / 180) * sage_pi for i in range(0, 360, 24)] v1_lst_A = [ sage_pi / 2 + (sage_QQ(i) / 180) * sage_pi for i in range(0, 360, 12) ] v1_lstFF = [(sage_QQ(i) / 180) * sage_pi for i in range(0, 360, 1)] v1_lst_WA = [ 0.1, 0.52, 0.94, 1.36, 1.78, 2.2, 2.61, 3.04, 3.45, 3.88, 4.3, 4.712, 5.13, 5.55, 5.965 ] v1_lst_WB = [ 0, 0.7, 1.31, 1.8, 2.18, 2.5, 2.77, 3.015, 3.26, 3.51, 3.78, 4.099, 4.49, 4.97, 5.579 ] v1_lst_WD = [(sage_QQ(i) / 180) * sage_pi for i in range(0, 360, 24)] v1_lst_WC = [(sage_QQ(i) / 180) * sage_pi for i in range(0, 360, 24)] pin.curve_dct['A'] = { 'step0': v0_lst, 'step1': v1_lst_A, 'prec': 10, 'width': 0.05 } pin.curve_dct['B'] = { 'step0': v0_lst, 'step1': v1_lst, 'prec': 10, 'width': 0.05 } pin.curve_dct['C'] = { 'step0': v0_lst, 'step1': v1_lst, 'prec': 10, 'width': 0.05 } pin.curve_dct['D'] = { 'step0': v0_lst, 'step1': v1_lst, 'prec': 10, 'width': 0.05 } pin.curve_dct['FA'] = { 'step0': v0_lst, 'step1': v1_lstFF, 'prec': 10, 'width': 0.02 } pin.curve_dct['FB'] = { 'step0': v0_lst, 'step1': v1_lstFF, 'prec': 10, 'width': 0.02 } pin.curve_dct['FC'] = { 'step0': v0_lst, 'step1': v1_lstFF, 'prec': 10, 'width': 0.02 } pin.curve_dct['FD'] = { 'step0': v0_lst, 'step1': v1_lstFF, 'prec': 10, 'width': 0.02 } pin.curve_dct['WA'] = { 'step0': v0_lst, 'step1': v1_lst_WA, 'prec': 10, 'width': 0.05 } pin.curve_dct['WB'] = { 'step0': v0_lst, 'step1': v1_lst_WB, 'prec': 10, 'width': 0.05 } pin.curve_dct['WC'] = { 'step0': v0_lst, 'step1': v1_lst_WC, 'prec': 10, 'width': 0.05 } pin.curve_dct['WD'] = { 'step0': v0_lst, 'step1': v1_lst_WD, 'prec': 10, 'width': 0.05 } # A = | rotated circle # B = - horizontal circle # C = / villarceau circle # D = \ villarceau circle col_A = rgbt2pov((28, 125, 154, 0)) # blue col_B = rgbt2pov((74, 33, 0, 0)) # brown col_C = rgbt2pov((75, 102, 0, 0)) # green col_D = rgbt2pov((187, 46, 0, 0)) # red/orange colFF = rgbt2pov((179, 200, 217, 0)) # light blue pin.text_dct['A'] = [True, col_A, 'phong 0.2 phong_size 5'] pin.text_dct['B'] = [True, col_B, 'phong 0.2 phong_size 5'] pin.text_dct['C'] = [True, col_C, 'phong 0.2 phong_size 5'] pin.text_dct['D'] = [True, col_D, 'phong 0.2 phong_size 5'] pin.text_dct['FA'] = [True, colFF, 'phong 0.2 phong_size 5'] pin.text_dct['FB'] = [True, colFF, 'phong 0.2 phong_size 5'] pin.text_dct['FC'] = [True, colFF, 'phong 0.2 phong_size 5'] pin.text_dct['FD'] = [True, colFF, 'phong 0.2 phong_size 5'] pin.text_dct['WA'] = [True, col_A, 'phong 0.2 phong_size 5'] pin.text_dct['WB'] = [True, col_B, 'phong 0.2 phong_size 5'] pin.text_dct['WC'] = [True, col_C, 'phong 0.2 phong_size 5'] pin.text_dct['WD'] = [True, col_D, 'phong 0.2 phong_size 5'] # raytrace image/animation create_pov(pin, ['A', 'C', 'D']) create_pov(pin, ['A', 'C', 'D'] + ['FA', 'FC', 'FD']) create_pov(pin, ['WA', 'WB', 'WC', 'WD']) create_pov(pin, ['WA', 'WB', 'WC', 'WD'] + ['FA', 'FC', 'FD']) create_pov(pin, ['WA', 'WB', 'WD']) create_pov(pin, ['WA', 'WB', 'WD'] + ['FA', 'FC', 'FD'])