Exemple #1
0
def test_rebin_to_rest(specmr):
    zarr = np.array([2.1, 2.2])
    # Build spectra array
    rest_spec = ltsu.rebin_to_rest(specmr, zarr, 100 * u.km / u.s, debug=False)
    # Test
    assert rest_spec.totpix == 3716
    np.testing.assert_allclose(rest_spec.wvmin.value, 986.3506403, rtol=1e-5)
def test_rebin_to_rest(specmr):
    zarr = np.array([2.1,2.2])
    # Build spectra array
    rest_spec = ltsu.rebin_to_rest(specmr, zarr, 100*u.km/u.s, debug=False)
    # Test
    assert rest_spec.totpix == 3716
    np.testing.assert_allclose(rest_spec.wvmin.value, 986.3506403, rtol=1e-5)
Exemple #3
0
def test_smash_spectra(specmr):
    # Try to stack 2 spectra with different wavelengths
    with pytest.raises(AssertionError):
        stack = ltsu.smash_spectra(specmr)
    # Stack rebinned
    zarr = np.array([2.1, 2.2])
    rest_spec = ltsu.rebin_to_rest(specmr, zarr, 100 * u.km / u.s, debug=False)
    stack = ltsu.smash_spectra(rest_spec, method='average')
    # Test
    assert stack.totpix == 3716
    np.testing.assert_allclose(stack.flux[1].value, -3.32135105133, rtol=1e-5)
def test_smash_spectra(specmr):
    # Try to stack 2 spectra with different wavelengths
    with pytest.raises(AssertionError):
        stack = ltsu.smash_spectra(specmr)
    # Stack rebinned
    zarr = np.array([2.1,2.2])
    rest_spec = ltsu.rebin_to_rest(specmr, zarr, 100*u.km/u.s, debug=False)
    stack = ltsu.smash_spectra(rest_spec, method='average')
    # Test
    assert stack.totpix == 3716
    np.testing.assert_allclose(stack.flux[1].value, -3.32135105133, rtol=1e-5)
Exemple #5
0
def clean(spec, red):
    """
    :param spec: (numpy array) XSpectrum1D objects
    :param red: (numpy array) their redshift values (z)

    :returns:
        rest_spec: (numpy array) truncatted, normalized and restframed XSpectrum1D objects
    """

    import numpy as np
    import astropy.units as u
    from linetools.spectra import utils as ltsu
    from linetools.spectra.xspectrum1d import XSpectrum1D

    r = range(len(spec))

    temp = [np.asarray(spec[i].wavelength / (1 + red[i])) for i in r]
    # truncating each spectra to only include wavelength values from 1000 to 1450
    wv_coverage = [(1000 < entry) & (entry < 1450) for entry in temp]

    wave = np.asarray([spec[i].wavelength[wv_coverage[i]] for i in r])
    flux = np.asarray([spec[i].flux[wv_coverage[i]] for i in r])
    error = np.asarray([spec[i].sig[wv_coverage[i]] for i in r])

    temp = [np.asarray(wave[i] / (1 + red[i])) for i in r]
    # normalizing just between the SiII lines
    wv_norm = [(1260 < entry) & (entry < 1304)
               for entry in temp]  # just between the SiII lines

    flux_range = np.asarray([flux[i][wv_norm[i]] for i in r])
    medians = np.asarray([np.median(flux_range[i]) for i in r])
    norm_flux = np.asarray([(flux[i] / medians[i]) for i in r])

    # getting a single XSpec object to feed into the stack
    spec = [XSpectrum1D(wave[i], norm_flux[i], error[i]) for i in r]
    collate = ltsu.collate(spec)
    rest_spec = ltsu.rebin_to_rest(collate,
                                   red,
                                   300 * u.km / u.s,
                                   grow_bad_sig=True)

    return rest_spec
Exemple #6
0
def stack_spec(spec_file, dv=100 * u.km / u.s, cut_on_rho=4.):
    # Load
    xspec, tpe, spec_tbl = load_spec(spec_file)
    # Cut on separation (should do this much earlier in the process)
    if cut_on_rho is not None:
        warnings.warn("Cutting on rho in stack.  Should do this earlier")
        b_coords = SkyCoord(ra=tpe['BG_RA'], dec=tpe['BG_DEC'], unit='deg')
        f_coords = SkyCoord(ra=tpe['FG_RA'], dec=tpe['FG_DEC'], unit='deg')
        kpc_amin = cosmo.kpc_comoving_per_arcmin(tpe['FG_Z'])  # kpc per arcmin
        ang_seps = b_coords.separation(f_coords)
        rho = ang_seps.to('arcmin') * kpc_amin / (1 + tpe['FG_Z'])
        cut_rho = rho.to('Mpc').value < cut_on_rho
        print("We have {:d} spectra after the cut.".format(np.sum(cut_rho)))
        xspec = xspec[cut_rho]
        tpe = tpe[cut_rho]
        spec_tbl = spec_tbl[cut_rho]
    # Remove those without continua
    has_co = spec_tbl['HAS_CO'].data
    co_spec = xspec[has_co]
    co_spec.normed = True  # Apply continuum
    #  May also wish to isolate in wavelength to avoid rejected pixels
    for ii in range(co_spec.nspec):
        co_spec.select = ii
        co = co_spec.co.value
        sig = co_spec.sig.value
        bad_pix = np.any([(co == 0.), (co == 1.), (sig <= 0.)], axis=0)
        co_spec.add_to_mask(bad_pix, compressed=True)

    # Rebin to rest
    zarr = tpe['FG_Z'][has_co]
    rebin_spec = lspu.rebin_to_rest(co_spec, zarr, dv)

    # Stack
    stack = lspu.smash_spectra(rebin_spec)

    # Plot
    tpep.plot_stack(stack, 'all_stack.pdf')
    tpep.plot_spec_img(rebin_spec, 'spec_img.pdf')
    pdb.set_trace()
    # Return
    return
def reading_data(path, resol, zlow, zhigh):
    '''
    function for requesting the spectra from desi mocks
    :param resol float: dleta v for rebin
    :param zlow float: lower limit for request redshift
    :param zhigh float: higher limit for request redshift
    :return: two class object: 1.meta data and unbinned spectra 2. xspectrum object
    '''

    #define the variable
    dataz = []
    z = []
    zerr = []
    fluxt = []
    wavetotal = []
    ivar = []

    ra = []
    dec = []
    id = []
    filename = []
    wvmin = []
    wvmax = []
    npix = []
    date = []
    #loop through the whole directory for requesting spectra
    specf = []
    mag = []
    item1 = os.listdir(str(path))
    for k in item1:
        item = os.listdir(str(path) + str(k))
        # print (item)
        for j in item:

            if os.listdir(str(path) + str(k) + '/' + str(j) + '/'):
                dataz = fits.open(
                    str(path) + str(k) + '/' + str(j) + '/zbest-16-' + str(j) +
                    '.fits')
                data = fits.open(
                    str(path) + str(k) + '/' + str(j) + '/spectra-16-' +
                    str(j) + '.fits')  # k j j
                zcut = (zlow < np.array(dataz[1].data['Z'])) & (np.array(
                    dataz[1].data['Z']) < zhigh)
                wavecut = (np.array(data[2].data) < 5730)
                wavecut2 = ((np.array(data[7].data) > 5730) &
                            (np.array(data[7].data) < 7560))
                wavecut3 = (np.array(data[12].data) > 7560)

                z.append(dataz[1].data['Z'][zcut])
                zerr.append(dataz[1].data['ZERR'][zcut])
                ra.append(data[1].data['TARGET_RA'][zcut])
                dec.append(data[1].data['TARGET_DEC'][zcut])
                id.append(data[1].data['TARGETID'][zcut])
                filename.append(
                    np.tile([k, j, j], (len(dataz[1].data['Z'][zcut]), 1)))

                mag.append(1.0)
                date.append(data[1].data['NIGHT'][zcut])

                #combining the spectra from three channels
                wavetotal.append(
                    np.repeat([
                        np.concatenate([
                            data[2].data[wavecut], data[7].data[wavecut2],
                            data[12].data[wavecut3]
                        ])
                    ],
                              len(dataz[1].data['Z']),
                              axis=0)[zcut])
                fluxt.append(
                    np.concatenate(
                        (data[3].data[:, wavecut], data[8].data[:, wavecut2],
                         data[13].data[:, wavecut3]),
                        axis=1)[zcut])
                ivar.append(
                    np.concatenate(
                        (data[4].data[:, wavecut], data[9].data[:, wavecut2],
                         data[14].data[:, wavecut3]),
                        axis=1)[zcut])

    sp = XSpectrum1D(np.vstack(np.array(wavetotal)),
                     np.vstack(np.array(fluxt)),
                     np.sqrt(1 / np.vstack(np.array(ivar))),
                     verbose=False)

    #ra,dec,id,filename,wvmin,wvmax,npix, date, mag,z, zerr

    binspec = ltsu.rebin_to_rest(sp,
                                 np.zeros(len(np.array(np.concatenate(z)))),
                                 resol * u.km / u.s)
    specf = spec(np.concatenate(ra), np.concatenate(dec), np.concatenate(id),
                 np.concatenate(filename), np.min(binspec.wavelength),
                 np.max(binspec.wavelength), len(binspec.wavelength),
                 np.concatenate(date), np.array(mag), np.concatenate(z),
                 np.concatenate(zerr))

    # newwave = np.linspace(np.min(wavetotal[0]),np.max(wavetotal[0]),reso)

    return specf, binspec
Exemple #8
0
def miss_id_check(path, idt, resol):
    '''
    Function for requesting spectra and meta for undetected DLAs
    :param path object: path for the spectra
    :param idt float: undetected id
    :param resol: resolution for spectr
    :return: two class object: 1. meta for spectra 2. spectra for undetected DLAs
    '''
    # define the variable
    dataz = []
    z = []
    zerr = []
    fluxt = []
    wavetotal = []
    ivar = []
    mockid = []
    ra = []
    dec = []
    mockid = []
    filename = []
    wvmin = []
    wvmax = []
    npix = []
    date = []
    # loop through the whole directory for requesting spectra
    specf = []
    mag = []
    item1 = os.listdir(str(path))
    for k in item1:
        item = os.listdir(str(path) + str(k))
        # print (item)
        for j in item:

            if os.listdir(str(path) + str(k) + '/' + str(j) + '/'):
                dataz = fits.open(
                    str(path) + str(k) + '/' + str(j) + '/truth-16-' + str(
                        j) + '.fits')
                data = fits.open(str(path) + str(k) + '/' + str(
                    j) + '/spectra-16-' + str(j) + '.fits')  # k j j
                indexcut = np.isin(data[1].data['TARGETID'], idt)
                wavecut = (np.array(data[2].data) < 5730)
                wavecut2 = ((np.array(data[7].data) > 5730) & (np.array(data[7].data) < 7560))
                wavecut3 = (np.array(data[12].data) > 7560)

                z.append(dataz[1].data['Z'][indexcut])
                zerr.append(dataz[1].data['TRUEZ'][indexcut])
                ra.append(data[1].data['TARGET_RA'][indexcut])
                dec.append(data[1].data['TARGET_DEC'][indexcut])
                mockid.append(data[1].data['TARGETID'][indexcut])

                # combining the spectra from three channels
                wavetotal.append(np.repeat(
                    [np.concatenate([data[2].data[wavecut], data[7].data[wavecut2], data[12].data[wavecut3]])],
                    len(dataz[1].data['Z']), axis=0)[indexcut])
                fluxt.append(
                    np.concatenate((data[3].data[:, wavecut], data[8].data[:, wavecut2], data[13].data[:, wavecut3]),
                                   axis=1)[indexcut])
                ivar.append(
                    np.concatenate((data[4].data[:, wavecut], data[9].data[:, wavecut2], data[14].data[:, wavecut3]),
                                   axis=1)[indexcut])

    sp = XSpectrum1D(np.vstack(np.array(wavetotal)), np.vstack(np.array(fluxt)), np.sqrt(1 / np.vstack(np.array(ivar))),
                     verbose=False)

    # ra,dec,id,filename,wvmin,wvmax,npix, date, mag,z, zerr
    binspec = ltsu.rebin_to_rest(sp, np.zeros(len(np.array(np.concatenate(z)))), resol * u.km / u.s)

    specf = SPEC.spec_meta(np.concatenate(ra), np.concatenate(dec), np.concatenate(mockid),
                 np.min(binspec.wavelength),
                 np.max(binspec.wavelength), len(binspec.wavelength),
                 np.concatenate(z), np.concatenate(zerr))

    # newwave = np.linspace(np.min(wavetotal[0]),np.max(wavetotal[0]),reso)

    return specf, binspec
Exemple #9
0
def tpe_stack_lris(dv=100 * u.km / u.s):
    """ Testing stacks with LRIS
    """
    # Load sample
    ipos = this_file.rfind('/')
    if ipos == -1:
        path = './'
    else:
        path = this_file[0:ipos]
    tpe = Table.read(path + '/../TPE_DR12_31.2_spec.fits')
    # Load spectra
    # Coordiantes
    b_coords = SkyCoord(ra=tpe['BG_RA'], dec=tpe['BG_DEC'], unit='deg')
    f_coords = SkyCoord(ra=tpe['FG_RA'], dec=tpe['FG_DEC'], unit='deg')

    # Cut on impact parameter and BOSS
    kpc_amin = cosmo.kpc_comoving_per_arcmin(tpe['FG_Z'])  # kpc per arcmin
    ang_seps = b_coords.separation(f_coords)
    rho = ang_seps.to('arcmin') * kpc_amin / (1 + tpe['FG_Z'])

    cut_Rlris = (rho.to('Mpc').value < 4) & (tpe['BG_LYA_INSTRUMENT'] == 'LRIS'
                                             )  # & (
    #tpe['FG_Z'] > 2.) # Some of these have too low z (just barely)

    # Cut
    gd_b_coords = b_coords[cut_Rlris]
    gd_tpe = tpe[cut_Rlris]

    # Grab these spectra from QPQ
    #   For boss, we are ok taking the first entry of each
    #   The returned set is aligned with the input coords
    qpq = IgmSpec(db_file=qpq_file, skip_test=True)

    IDs = qpq.qcat.match_coord(gd_b_coords, group='LRIS')
    meta = qpq['LRIS'].meta
    gcut = meta['GRATING'] == '1200/3400'  # There is one with B400
    B1200 = np.in1d(IDs, meta['PRIV_ID'][gcut])
    print("There are {:d} sources without B1200".format(np.sum(~B1200)))
    # Cut again
    gd_b_coords = gd_b_coords[B1200]
    gd_tpe = gd_tpe[B1200]
    gd_IDs = IDs[B1200]

    # Find the rows
    idx = cat_utils.match_ids(gd_IDs, meta['PRIV_ID'])
    rows = meta['GROUP_ID'][idx]
    pdb.set_trace()

    spec, meta = qpq.coords_to_spectra(gd_b_coords, 'LRIS', all_spec=False)

    # Check for continua
    has_co = np.array([True] * spec.nspec)
    for ii in range(spec.nspec):
        # Select
        spec.select = ii
        # Match to lya
        lya = (1 + gd_tpe['FG_Z'][ii]) * 1215.67 * u.AA
        iwave = np.argmin(np.abs(spec.wavelength - lya))
        # Check for co
        #coval = spec.co[iwave]
        #print('spec: {:d} with co={:g}'.format(ii, coval))
        if np.isclose(spec.co[iwave], 0.) or np.isclose(spec.co[iwave], 1.):
            has_co[ii] = False

    # Slice to good co
    print("{:d} BOSS spectra with a continuum".format(np.sum(has_co)))
    co_spec = spec[has_co]
    co_spec.normed = True  # Apply continuum

    # NEED TO ZERO OUT REGIONS WITHOUT CONTINUUM
    #  May also wish to isolate in wavelength to avoid rejected pixels
    for ii in range(co_spec.nspec):
        co_spec.select = ii
        co = co_spec.co.value
        bad_pix = np.any([(co == 0.), (co == 1.)], axis=0)
        co_spec.add_to_mask(bad_pix, compressed=True)

    # Rebin to rest
    zarr = gd_tpe['FG_Z'][has_co]
    rebin_spec = lspu.rebin_to_rest(co_spec, zarr, dv)

    # Stack
    stack = lspu.smash_spectra(rebin_spec)

    # Plot
    plot_stack(stack, 'LRIS_stack.pdf')

    return stack
Exemple #10
0
def tpe_stack_boss(dv=100 * u.km / u.s):
    """ Testing stacks with BOSS
    """
    # Load sample
    ipos = this_file.rfind('/')
    if ipos == -1:
        path = './'
    else:
        path = this_file[0:ipos]
    tpe = Table.read(path + '/../TPE_DR12_31.2_spec.fits')
    # Load spectra
    igmsp = IgmSpec()
    # Coordiantes
    b_coords = SkyCoord(ra=tpe['BG_RA'], dec=tpe['BG_DEC'], unit='deg')
    f_coords = SkyCoord(ra=tpe['FG_RA'], dec=tpe['FG_DEC'], unit='deg')

    # Cut on impact parameter and BOSS
    kpc_amin = cosmo.kpc_comoving_per_arcmin(tpe['FG_Z'])  # kpc per arcmin
    ang_seps = b_coords.separation(f_coords)
    rho = ang_seps.to('arcmin') * kpc_amin / (1 + tpe['FG_Z'])

    cut_Rboss = (rho.to('Mpc').value < 4) & (
        tpe['BG_LYA_INSTRUMENT'] == 'BOSS') & (
            tpe['FG_Z'] > 2.)  # Some of these have too low z (just barely)

    # Cut
    gd_b_coords = b_coords[cut_Rboss]
    gd_f_coords = f_coords[cut_Rboss]
    gd_tpe = tpe[cut_Rboss]

    # Grab these spectra from igmsp
    #   For boss, we are ok taking the first entry of each
    #   The returned set is aligned with the input coords
    spec, meta = igmsp.coords_to_spectra(gd_b_coords,
                                         'BOSS_DR12',
                                         all_spec=False)

    # Check for continua
    has_co = np.array([True] * spec.nspec)
    for ii in range(spec.nspec):
        # Select
        spec.select = ii
        # Match to lya
        lya = (1 + gd_tpe['FG_Z'][ii]) * 1215.67 * u.AA
        iwave = np.argmin(np.abs(spec.wavelength - lya))
        # Check for co
        #coval = spec.co[iwave]
        #print('spec: {:d} with co={:g}'.format(ii, coval))
        if np.isclose(spec.co[iwave], 0.) or np.isclose(spec.co[iwave], 1.):
            has_co[ii] = False

    # Slice to good co
    print("{:d} BOSS spectra with a continuum".format(np.sum(has_co)))
    co_spec = spec[has_co]
    co_spec.normed = True  # Apply continuum

    # NEED TO ZERO OUT REGIONS WITHOUT CONTINUUM
    #  May also wish to isolate in wavelength to avoid rejected pixels
    for ii in range(co_spec.nspec):
        co_spec.select = ii
        co = co_spec.co.value
        bad_pix = np.any([(co == 0.), (co == 1.)], axis=0)
        co_spec.add_to_mask(bad_pix, compressed=True)

    # Rebin to rest
    zarr = gd_tpe['FG_Z'][has_co]
    rebin_spec = lspu.rebin_to_rest(co_spec, zarr, dv)

    # Check 2D
    check_td = True
    if check_td:
        fx = rebin_spec.data['flux']
        sig = rebin_spec.data['sig']
        gds = sig > 0.
        fx[~gds] = 0.
        xdb.set_trace()  # xdb.ximshow(fx)

    # Stack
    stack = lspu.smash_spectra(rebin_spec)
    # Plot
    plot_stack(stack, 'BOSS_stack.pdf')
    print('Wrote')

    return stack