def train_vgg_lstm(batch_size, spatial_epochs, temporal_epochs, train_id, list_dB, spatial_size, flag, objective_flag, tensorboard): ############## Path Preparation ###################### root_db_path = "/media/ostalo/MihaGarafolj/ME_data/" tensorboard_path = root_db_path + "tensorboard/" if os.path.isdir(root_db_path + 'Weights/' + str(train_id)) == False: os.mkdir(root_db_path + 'Weights/' + str(train_id)) ###################################################### ############## Variables ################### dB = list_dB[0] r, w, subjects, samples, n_exp, VidPerSubject, vidList, timesteps_TIM, data_dim, channel, table, listOfIgnoredSamples, db_home, db_images, cross_db_flag = load_db( root_db_path, list_dB, spatial_size, objective_flag) # avoid confusion if cross_db_flag == 1: list_samples = listOfIgnoredSamples # total confusion matrix to be used in the computation of f1 score tot_mat = np.zeros((n_exp, n_exp)) history = LossHistory() stopping = EarlyStopping(monitor='loss', min_delta=0, mode='min', patience=3) ############################################ ############## Flags #################### tensorboard_flag = tensorboard resizedFlag = 1 train_spatial_flag = 0 train_temporal_flag = 0 svm_flag = 0 finetuning_flag = 0 cam_visualizer_flag = 0 channel_flag = 0 if flag == 'st': train_spatial_flag = 1 train_temporal_flag = 1 finetuning_flag = 1 elif flag == 's': train_spatial_flag = 1 finetuning_flag = 1 elif flag == 't': train_temporal_flag = 1 elif flag == 'nofine': svm_flag = 1 elif flag == 'scratch': train_spatial_flag = 1 train_temporal_flag = 1 elif flag == 'st4se' or flag == 'st4se_cde': train_spatial_flag = 1 train_temporal_flag = 1 channel_flag = 1 elif flag == 'st7se' or flag == 'st7se_cde': train_spatial_flag = 1 train_temporal_flag = 1 channel_flag = 2 elif flag == 'st4te' or flag == 'st4te_cde': train_spatial_flag = 1 train_temporal_flag = 1 channel_flag = 3 elif flag == 'st7te' or flag == 'st7te_cde': train_spatial_flag = 1 train_temporal_flag = 1 channel_flag = 4 ######################################### ############ Reading Images and Labels ################ if cross_db_flag == 1: SubperdB = Read_Input_Images_SAMM_CASME(db_images, list_samples, listOfIgnoredSamples, dB, resizedFlag, table, db_home, spatial_size, channel) else: SubperdB = Read_Input_Images(db_images, listOfIgnoredSamples, dB, resizedFlag, table, db_home, spatial_size, channel, objective_flag) labelperSub = label_matching(db_home, dB, subjects, VidPerSubject) print("Loaded Images into the tray.") print("Loaded Labels into the tray.") ####################################################### # PREPROCESSING STEPS # optical flow #SubperdB = optical_flow_2d(SubperdB, samples, r, w, timesteps_TIM) gc.collect() if channel_flag == 1: aux_db1 = list_dB[1] db_strain_img = root_db_path + aux_db1 + "/" + aux_db1 + "/" if cross_db_flag == 1: SubperdB = Read_Input_Images_SAMM_CASME( db_strain_img, list_samples, listOfIgnoredSamples, aux_db1, resizedFlag, table, db_home, spatial_size, 1) else: SubperdB_strain = Read_Input_Images(db_strain_img, listOfIgnoredSamples, aux_db1, resizedFlag, table, db_home, spatial_size, 1, objective_flag) elif channel_flag == 2: aux_db1 = list_dB[1] aux_db2 = list_dB[2] db_strain_img = root_db_path + aux_db1 + "/" + aux_db1 + "/" db_gray_img = root_db_path + aux_db2 + "/" + aux_db2 + "/" if cross_db_flag == 1: SubperdB_strain = Read_Input_Images_SAMM_CASME( db_strain_img, list_samples, listOfIgnoredSamples, aux_db1, resizedFlag, table, db_home, spatial_size, 1) SubperdB_gray = Read_Input_Images_SAMM_CASME( db_gray_img, list_samples, listOfIgnoredSamples, aux_db2, resizedFlag, table, db_home, spatial_size, 1) else: SubperdB_strain = Read_Input_Images(db_strain_img, listOfIgnoredSamples, aux_db1, resizedFlag, table, db_home, spatial_size, 1, objective_flag) SubperdB_gray = Read_Input_Images(db_gray_img, listOfIgnoredSamples, aux_db2, resizedFlag, table, db_home, spatial_size, 1, objective_flag) elif channel_flag == 3: aux_db1 = list_dB[1] db_strain_img = root_db_path + aux_db1 + "/" + aux_db1 + "/" if cross_db_flag == 1: SubperdB = Read_Input_Images_SAMM_CASME( db_strain_img, list_samples, listOfIgnoredSamples, aux_db1, resizedFlag, table, db_home, spatial_size, 3) else: SubperdB_strain = Read_Input_Images(db_strain_img, listOfIgnoredSamples, aux_db1, resizedFlag, table, db_home, spatial_size, 3, objective_flag) elif channel_flag == 4: aux_db1 = list_dB[1] aux_db2 = list_dB[2] db_strain_img = root_db_path + aux_db1 + "/" + aux_db1 + "/" db_gray_img = root_db_path + aux_db2 + "/" + aux_db2 + "/" if cross_db_flag == 1: SubperdB_strain = Read_Input_Images_SAMM_CASME( db_strain_img, list_samples, listOfIgnoredSamples, aux_db1, resizedFlag, table, db_home, spatial_size, 3) SubperdB_gray = Read_Input_Images_SAMM_CASME( db_gray_img, list_samples, listOfIgnoredSamples, aux_db2, resizedFlag, table, db_home, spatial_size, 3) else: SubperdB_strain = Read_Input_Images(db_strain_img, listOfIgnoredSamples, aux_db1, resizedFlag, table, db_home, spatial_size, 3, objective_flag) SubperdB_gray = Read_Input_Images(db_gray_img, listOfIgnoredSamples, aux_db2, resizedFlag, table, db_home, spatial_size, 3, objective_flag) ####################################################### ########### Model Configurations ####################### #K.set_image_dim_ordering('th') # config = tf.ConfigProto() # config.gpu_options.allow_growth = True # config.gpu_options.per_process_gpu_memory_fraction = 0.8 # K.tensorflow_backend.set_session(tf.Session(config=config)) # Different Conditions for Temporal Learning ONLY if train_spatial_flag == 0 and train_temporal_flag == 1 and dB != 'CASME2_Optical': data_dim = spatial_size * spatial_size elif train_spatial_flag == 0 and train_temporal_flag == 1 and dB == 'CASME2_Optical': data_dim = spatial_size * spatial_size * 3 elif channel_flag == 3: data_dim = 8192 elif channel_flag == 4: data_dim = 12288 else: data_dim = 4096 ######################################################## print("Beginning training process.") ########### Training Process ############ subjects_todo = read_subjects_todo(db_home, dB, train_id, subjects) for sub in subjects_todo: #sgd = optimizers.SGD(lr=0.0001, decay=1e-7, momentum=0.9, nesterov=True) adam = optimizers.Adam(lr=0.00001, decay=0.000001) print("**** starting subject " + str(sub) + " ****") #gpu_obgpu_observer() spatial_weights_name = root_db_path + 'Weights/' + str( train_id) + '/vgg_spatial_' + str(train_id) + '_' + str(dB) + '_' spatial_weights_name_strain = root_db_path + 'Weights/' + str( train_id) + '/vgg_spatial_strain_' + str(train_id) + '_' + str( dB) + '_' spatial_weights_name_gray = root_db_path + 'Weights/' + str( train_id) + '/vgg_spatial_gray_' + str(train_id) + '_' + str( dB) + '_' temporal_weights_name = root_db_path + 'Weights/' + str( train_id) + '/temporal_ID_' + str(train_id) + '_' + str(dB) + '_' ae_weights_name = root_db_path + 'Weights/' + str( train_id) + '/autoencoder_' + str(train_id) + '_' + str(dB) + '_' ae_weights_name_strain = root_db_path + 'Weights/' + str( train_id) + '/autoencoder_strain_' + str(train_id) + '_' + str( dB) + '_' ############### Reinitialization & weights reset of models ######################## temporal_model = temporal_module(data_dim=data_dim, timesteps_TIM=timesteps_TIM, lstm1_size=3000, classes=n_exp) temporal_model.compile(loss='categorical_crossentropy', optimizer=adam, metrics=[metrics.categorical_accuracy]) if channel_flag == 1: vgg_model = VGG_16_4_channels(classes=n_exp, channels=4, spatial_size=spatial_size) if finetuning_flag == 1: for layer in vgg_model.layers[:33]: layer.trainable = False vgg_model.compile(loss='categorical_crossentropy', optimizer=adam, metrics=[metrics.categorical_accuracy]) elif channel_flag == 2: vgg_model = VGG_16_4_channels(classes=n_exp, channels=5, spatial_size=spatial_size) if finetuning_flag == 1: for layer in vgg_model.layers[:33]: layer.trainable = False vgg_model.compile(loss='categorical_crossentropy', optimizer=adam, metrics=[metrics.categorical_accuracy]) elif channel_flag == 3 or channel_flag == 4: vgg_model = VGG_16(spatial_size=spatial_size, classes=n_exp, channels=3, weights_path='VGG_Face_Deep_16.h5') vgg_model_strain = VGG_16(spatial_size=spatial_size, classes=n_exp, channels=3, weights_path='VGG_Face_Deep_16.h5') if finetuning_flag == 1: for layer in vgg_model.layers[:33]: layer.trainable = False for layer in vgg_model_strain.layers[:33]: layer.trainable = False vgg_model.compile(loss='categorical_crossentropy', optimizer=adam, metrics=[metrics.categorical_accuracy]) vgg_model_strain.compile(loss='categorical_crossentropy', optimizer=adam, metrics=[metrics.categorical_accuracy]) if channel_flag == 4: vgg_model_gray = VGG_16(spatial_size=spatial_size, classes=n_exp, channels=3, weights_path='VGG_Face_Deep_16.h5') if finetuning_flag == 1: for layer in vgg_model_gray.layers[:33]: layer.trainable = False vgg_model_gray.compile(loss='categorical_crossentropy', optimizer=adam, metrics=[metrics.categorical_accuracy]) else: vgg_model = VGG_16(spatial_size=spatial_size, classes=n_exp, channels=channel, channel_first=False, weights_path='VGG_Face_Deep_16.h5') if finetuning_flag == 1: for layer in vgg_model.layers[:33]: layer.trainable = False vgg_model.compile(loss='categorical_crossentropy', optimizer=adam, metrics=[metrics.categorical_accuracy]) #svm_classifier = SVC(kernel='linear', C=1) #################################################################################### ############ for tensorboard ############### if tensorboard_flag == 1: cat_path = tensorboard_path + str(train_id) + str(sub) + "/" if os.path.exists(cat_path): os.rmdir(cat_path) os.mkdir(cat_path) tbCallBack = keras.callbacks.TensorBoard(log_dir=cat_path, write_graph=True) cat_path2 = tensorboard_path + str(train_id) + str( sub) + "spatial/" if os.path.exists(cat_path2): os.rmdir(cat_path2) os.mkdir(cat_path2) tbCallBack2 = keras.callbacks.TensorBoard(log_dir=cat_path2, write_graph=True) ############################################# #import ipdb; ipdb.set_trace() Train_X, Train_Y, Test_X, Test_Y, Test_Y_gt, X, y, test_X, test_y = restructure_data( sub, SubperdB, labelperSub, subjects, n_exp, r, w, timesteps_TIM, channel) # Special Loading for 4-Channel if channel_flag == 1: _, _, _, _, _, Train_X_Strain, Train_Y_Strain, Test_X_Strain, Test_Y_Strain = restructure_data( sub, SubperdB_strain, labelperSub, subjects, n_exp, r, w, timesteps_TIM, 1) # verify # sanity_check_image(Test_X_Strain, 1, spatial_size) # Concatenate Train X & Train_X_Strain X = np.concatenate((X, Train_X_Strain), axis=1) test_X = np.concatenate((test_X, Test_X_Strain), axis=1) total_channel = 4 elif channel_flag == 2: _, _, _, _, _, Train_X_Strain, Train_Y_Strain, Test_X_Strain, Test_Y_Strain = restructure_data( sub, SubperdB_strain, labelperSub, subjects, n_exp, r, w, timesteps_TIM, 1) _, _, _, _, _, Train_X_Gray, Train_Y_Gray, Test_X_Gray, Test_Y_Gray = restructure_data( sub, SubperdB_gray, labelperSub, subjects, n_exp, r, w, timesteps_TIM, 1) # Concatenate Train_X_Strain & Train_X & Train_X_Gray X = np.concatenate((X, Train_X_Strain, Train_X_Gray), axis=1) test_X = np.concatenate((test_X, Test_X_Strain, Test_X_Gray), axis=1) total_channel = 5 elif channel_flag == 3: _, _, _, _, _, Train_X_Strain, Train_Y_Strain, Test_X_Strain, Test_Y_Strain = restructure_data( sub, SubperdB_strain, labelperSub, subjects, n_exp, r, w, timesteps_TIM, 3) elif channel_flag == 4: _, _, _, _, _, Train_X_Strain, Train_Y_Strain, Test_X_Strain, Test_Y_Strain = restructure_data( sub, SubperdB_strain, labelperSub, subjects, n_exp, r, w, timesteps_TIM, 3) _, _, _, _, _, Train_X_Gray, Train_Y_Gray, Test_X_Gray, Test_Y_Gray = restructure_data( sub, SubperdB_gray, labelperSub, subjects, n_exp, r, w, timesteps_TIM, 3) ############### check gpu resources #################### #gpu_observer() ######################################################## print("Beginning training & testing.") ##################### Training & Testing ######################### if train_spatial_flag == 1 and train_temporal_flag == 1: print("Beginning spatial training.") # Spatial Training if tensorboard_flag == 1: vgg_model.fit(X, y, batch_size=batch_size, epochs=spatial_epochs, shuffle=True, callbacks=[history, stopping, tbCallBack2]) elif channel_flag == 3 or channel_flag == 4: vgg_model.fit(X, y, batch_size=batch_size, epochs=spatial_epochs, shuffle=True, callbacks=[history, stopping]) vgg_model_strain.fit(Train_X_Strain, y, batch_size=batch_size, epochs=spatial_epochs, shuffle=True, callbacks=[stopping]) model_strain = record_weights(vgg_model_strain, spatial_weights_name_strain, sub, flag) output_strain = model_strain.predict(Train_X_Strain, batch_size=batch_size) if channel_flag == 4: vgg_model_gray.fit(Train_X_Gray, y, batch_size=batch_size, epochs=spatial_epochs, shuffle=True, callbacks=[stopping]) model_gray = record_weights(vgg_model_gray, spatial_weights_name_gray, sub, flag) output_gray = model_gray.predict(Train_X_Gray, batch_size=batch_size) else: #import ipdb; ipdb.set_trace() vgg_model.fit(X, y, batch_size=batch_size, epochs=spatial_epochs, shuffle=True, callbacks=[history, stopping]) print(".record f1 and loss") # record f1 and loss record_loss_accuracy(db_home, train_id, dB, history) print(".save vgg weights") # save vgg weights # model = record_weights(vgg_model, spatial_weights_name, sub, flag) print(".spatial encoding") # Spatial Encoding model_int = Model(inputs=vgg_model.input, outputs=vgg_model.get_layer('dense_prvi').output) #model = record_weights(cnn_model, spatial_weights_name, sub, flag) features = model_int.predict(X, batch_size=batch_size) features = features.reshape(int(Train_X.shape[0]), timesteps_TIM, features.shape[1]) # concatenate features for temporal enrichment if channel_flag == 3: output = np.concatenate((output, output_strain), axis=1) elif channel_flag == 4: output = np.concatenate((output, output_strain, output_gray), axis=1) print("Beginning temporal training.") # Temporal Training if tensorboard_flag == 1: temporal_model.fit(features, Train_Y, batch_size=batch_size, epochs=temporal_epochs, callbacks=[tbCallBack]) else: temporal_model.fit(features, Train_Y, batch_size=batch_size, epochs=temporal_epochs) print(".save temportal weights") # save temporal weights temporal_model = record_weights(temporal_model, temporal_weights_name, sub, 't') # let the flag be t print("Beginning testing.") print(".predicting with spatial model") # Testing features = model_int.predict(test_X, batch_size=batch_size) features = features.reshape(int(Test_X.shape[0]), timesteps_TIM, features.shape[1]) if channel_flag == 3 or channel_flag == 4: output_strain = model_strain.predict(Test_X_Strain, batch_size=batch_size) if channel_flag == 4: output_gray = model_gray.predict(Test_X_Gray, batch_size=batch_size) # concatenate features for temporal enrichment if channel_flag == 3: output = np.concatenate((output, output_strain), axis=1) elif channel_flag == 4: output = np.concatenate((output, output_strain, output_gray), axis=1) print(".outputing features") print(".predicting with temporal model") predict_values = temporal_model.predict(features, batch_size=batch_size) predict = np.array([np.argmax(x) for x in predict_values]) ############################################################## #################### Confusion Matrix Construction ############# print(predict) print(Test_Y_gt.astype(int)) print(".writing predicts to file") file = open( db_home + 'Classification/' + 'Result/' + '/predicts_' + str(train_id) + '.txt', 'a') for i in range(len(vidList[sub])): file.write("sub_" + str(sub) + "," + str(vidList[sub][i]) + "," + str(predict.astype(list)[i]) + "," + str(Test_Y_gt.astype(int).astype(list)[i]) + "\n") file.close() file = open( db_home + 'Classification/' + 'Result/' + '/predictedvalues_' + str(train_id) + '.txt', 'a') for i in range(len(vidList[sub])): file.write("sub_" + str(sub) + "," + str(vidList[sub][i]) + "," + ','.join(str(e) for e in predict_values[i]) + "," + str(Test_Y_gt.astype(int).astype(list)[i]) + "\n") file.close() ct = confusion_matrix(Test_Y_gt, predict) # check the order of the CT order = np.unique(np.concatenate((predict, Test_Y_gt))) # create an array to hold the CT for each CV mat = np.zeros((n_exp, n_exp)) # put the order accordingly, in order to form the overall ConfusionMat for m in range(len(order)): for n in range(len(order)): mat[int(order[m]), int(order[n])] = ct[m, n] tot_mat = mat + tot_mat ################################################################ #################### cumulative f1 plotting ###################### microAcc = np.trace(tot_mat) / np.sum(tot_mat) [f1, precision, recall] = fpr(tot_mat, n_exp) file = open( db_home + 'Classification/' + 'Result/' + '/f1_' + str(train_id) + '.txt', 'a') file.write(str(f1) + "\n") file.close() ################################################################## ################# write each CT of each CV into .txt file ##################### record_scores(db_home, dB, ct, sub, order, tot_mat, n_exp, subjects) war = weighted_average_recall(tot_mat, n_exp, samples) uar = unweighted_average_recall(tot_mat, n_exp) print("war: " + str(war)) print("uar: " + str(uar)) ############################################################################### ################## free memory #################### del vgg_model del temporal_model del model_int del Train_X, Test_X, X, y if channel_flag == 1: del Train_X_Strain, Test_X_Strain, Train_Y_Strain, Test_Y_Strain elif channel_flag == 2: del Train_X_Strain, Test_X_Strain, Train_Y_Strain, Test_Y_Strain, Train_X_Gray, Test_X_Gray, Train_Y_Gray, Test_Y_Gray elif channel_flag == 3: del vgg_model_strain, model_strain del Train_X_Strain, Test_X_Strain, Train_Y_Strain, Test_Y_Strain elif channel_flag == 4: del Train_X_Strain, Test_X_Strain, Train_Y_Strain, Test_Y_Strain, Train_X_Gray, Test_X_Gray, Train_Y_Gray, Test_Y_Gray del vgg_model_gray, vgg_model_strain, model_gray, model_strain K.get_session().close() cfg = K.tf.ConfigProto() cfg.gpu_options.allow_growth = True K.set_session(K.tf.Session(config=cfg)) gc.collect()
def train(batch_size, spatial_epochs, temporal_epochs, train_id, list_dB, spatial_size, flag, objective_flag, tensorboard): ############## Path Preparation ###################### root_db_path = "/media/ice/OS/Datasets/" tensorboard_path = "/home/ice/Documents/Micro-Expression/tensorboard/" if os.path.isdir(root_db_path + 'Weights/' + str(train_id)) == False: os.mkdir(root_db_path + 'Weights/' + str(train_id)) ###################################################### ############## Variables ################### dB = list_dB[0] r, w, subjects, samples, n_exp, VidPerSubject, timesteps_TIM, data_dim, channel, table, listOfIgnoredSamples, db_home, db_images, cross_db_flag = load_db( root_db_path, list_dB, spatial_size, objective_flag) # avoid confusion if cross_db_flag == 1: list_samples = listOfIgnoredSamples # total confusion matrix to be used in the computation of f1 score tot_mat = np.zeros((n_exp, n_exp)) history = LossHistory() stopping = EarlyStopping(monitor='loss', min_delta=0, mode='min') ############################################ ############## Flags #################### tensorboard_flag = tensorboard resizedFlag = 1 train_spatial_flag = 0 train_temporal_flag = 0 svm_flag = 0 finetuning_flag = 0 cam_visualizer_flag = 0 channel_flag = 0 if flag == 'st': train_spatial_flag = 1 train_temporal_flag = 1 finetuning_flag = 1 elif flag == 's': train_spatial_flag = 1 finetuning_flag = 1 elif flag == 't': train_temporal_flag = 1 elif flag == 'nofine': svm_flag = 1 elif flag == 'scratch': train_spatial_flag = 1 train_temporal_flag = 1 elif flag == 'st4se' or flag == 'st4se_cde': train_spatial_flag = 1 train_temporal_flag = 1 channel_flag = 1 elif flag == 'st7se' or flag == 'st7se_cde': train_spatial_flag = 1 train_temporal_flag = 1 channel_flag = 2 elif flag == 'st4te' or flag == 'st4te_cde': train_spatial_flag = 1 train_temporal_flag = 1 channel_flag = 3 elif flag == 'st7te' or flag == 'st7te_cde': train_spatial_flag = 1 train_temporal_flag = 1 channel_flag = 4 ######################################### ############ Reading Images and Labels ################ if cross_db_flag == 1: SubperdB = Read_Input_Images_SAMM_CASME(db_images, list_samples, listOfIgnoredSamples, dB, resizedFlag, table, db_home, spatial_size, channel) else: SubperdB = Read_Input_Images(db_images, listOfIgnoredSamples, dB, resizedFlag, table, db_home, spatial_size, channel, objective_flag) labelperSub = label_matching(db_home, dB, subjects, VidPerSubject) print("Loaded Images into the tray...") print("Loaded Labels into the tray...") if channel_flag == 1: aux_db1 = list_dB[1] db_strain_img = root_db_path + aux_db1 + "/" + aux_db1 + "/" if cross_db_flag == 1: SubperdB = Read_Input_Images_SAMM_CASME( db_strain_img, list_samples, listOfIgnoredSamples, aux_db1, resizedFlag, table, db_home, spatial_size, 1) else: SubperdB_strain = Read_Input_Images(db_strain_img, listOfIgnoredSamples, aux_db1, resizedFlag, table, db_home, spatial_size, 1, objective_flag) elif channel_flag == 2: aux_db1 = list_dB[1] aux_db2 = list_dB[2] db_strain_img = root_db_path + aux_db1 + "/" + aux_db1 + "/" db_gray_img = root_db_path + aux_db2 + "/" + aux_db2 + "/" if cross_db_flag == 1: SubperdB_strain = Read_Input_Images_SAMM_CASME( db_strain_img, list_samples, listOfIgnoredSamples, aux_db1, resizedFlag, table, db_home, spatial_size, 1) SubperdB_gray = Read_Input_Images_SAMM_CASME( db_gray_img, list_samples, listOfIgnoredSamples, aux_db2, resizedFlag, table, db_home, spatial_size, 1) else: SubperdB_strain = Read_Input_Images(db_strain_img, listOfIgnoredSamples, aux_db1, resizedFlag, table, db_home, spatial_size, 1, objective_flag) SubperdB_gray = Read_Input_Images(db_gray_img, listOfIgnoredSamples, aux_db2, resizedFlag, table, db_home, spatial_size, 1, objective_flag) elif channel_flag == 3: aux_db1 = list_dB[1] db_strain_img = root_db_path + aux_db1 + "/" + aux_db1 + "/" if cross_db_flag == 1: SubperdB = Read_Input_Images_SAMM_CASME( db_strain_img, list_samples, listOfIgnoredSamples, aux_db1, resizedFlag, table, db_home, spatial_size, 3) else: SubperdB_strain = Read_Input_Images(db_strain_img, listOfIgnoredSamples, aux_db1, resizedFlag, table, db_home, spatial_size, 3, objective_flag) elif channel_flag == 4: aux_db1 = list_dB[1] aux_db2 = list_dB[2] db_strain_img = root_db_path + aux_db1 + "/" + aux_db1 + "/" db_gray_img = root_db_path + aux_db2 + "/" + aux_db2 + "/" if cross_db_flag == 1: SubperdB_strain = Read_Input_Images_SAMM_CASME( db_strain_img, list_samples, listOfIgnoredSamples, aux_db1, resizedFlag, table, db_home, spatial_size, 3) SubperdB_gray = Read_Input_Images_SAMM_CASME( db_gray_img, list_samples, listOfIgnoredSamples, aux_db2, resizedFlag, table, db_home, spatial_size, 3) else: SubperdB_strain = Read_Input_Images(db_strain_img, listOfIgnoredSamples, aux_db1, resizedFlag, table, db_home, spatial_size, 3, objective_flag) SubperdB_gray = Read_Input_Images(db_gray_img, listOfIgnoredSamples, aux_db2, resizedFlag, table, db_home, spatial_size, 3, objective_flag) ####################################################### ########### Model Configurations ####################### sgd = optimizers.SGD(lr=0.0001, decay=1e-7, momentum=0.9, nesterov=True) adam = optimizers.Adam(lr=0.00001, decay=0.000001) # Different Conditions for Temporal Learning ONLY if train_spatial_flag == 0 and train_temporal_flag == 1 and dB != 'CASME2_Optical': data_dim = spatial_size * spatial_size elif train_spatial_flag == 0 and train_temporal_flag == 1 and dB == 'CASME2_Optical': data_dim = spatial_size * spatial_size * 3 elif channel_flag == 3: data_dim = 8192 elif channel_flag == 4: data_dim = 12288 else: data_dim = 4096 ######################################################## ########### Training Process ############ for sub in range(subjects): spatial_weights_name = root_db_path + 'Weights/' + str( train_id) + '/vgg_spatial_' + str(train_id) + '_' + str(dB) + '_' spatial_weights_name_strain = root_db_path + 'Weights/' + str( train_id) + '/vgg_spatial_strain_' + str(train_id) + '_' + str( dB) + '_' spatial_weights_name_gray = root_db_path + 'Weights/' + str( train_id) + '/vgg_spatial_gray_' + str(train_id) + '_' + str( dB) + '_' temporal_weights_name = root_db_path + 'Weights/' + str( train_id) + '/temporal_ID_' + str(train_id) + '_' + str(dB) + '_' ae_weights_name = root_db_path + 'Weights/' + str( train_id) + '/autoencoder_' + str(train_id) + '_' + str(dB) + '_' ae_weights_name_strain = root_db_path + 'Weights/' + str( train_id) + '/autoencoder_strain_' + str(train_id) + '_' + str( dB) + '_' ############### Reinitialization & weights reset of models ######################## temporal_model = temporal_module(data_dim=data_dim, timesteps_TIM=timesteps_TIM, classes=n_exp) temporal_model.compile(loss='categorical_crossentropy', optimizer=adam, metrics=[metrics.categorical_accuracy]) conv_ae = convolutional_autoencoder(spatial_size=spatial_size, classes=n_exp) conv_ae.compile(loss='binary_crossentropy', optimizer=adam) if channel_flag == 1: vgg_model = VGG_16_4_channels(classes=n_exp, channels=4, spatial_size=spatial_size) vgg_model.compile(loss='categorical_crossentropy', optimizer=adam, metrics=[metrics.categorical_accuracy]) elif channel_flag == 2: vgg_model = VGG_16_4_channels(classes=n_exp, channels=5, spatial_size=spatial_size) vgg_model.compile(loss='categorical_crossentropy', optimizer=adam, metrics=[metrics.categorical_accuracy]) elif channel_flag == 3 or channel_flag == 4: vgg_model = VGG_16(spatial_size=spatial_size, classes=n_exp, channels=3, weights_path='VGG_Face_Deep_16.h5') vgg_model.compile(loss='categorical_crossentropy', optimizer=adam, metrics=[metrics.categorical_accuracy]) vgg_model_strain = VGG_16(spatial_size=spatial_size, classes=n_exp, channels=3, weights_path='VGG_Face_Deep_16.h5') vgg_model_strain.compile(loss='categorical_crossentropy', optimizer=adam, metrics=[metrics.categorical_accuracy]) if channel_flag == 4: vgg_model_gray = VGG_16(spatial_size=spatial_size, classes=n_exp, channels=3, weights_path='VGG_Face_Deep_16.h5') vgg_model_gray.compile(loss='categorical_crossentropy', optimizer=adam, metrics=[metrics.categorical_accuracy]) else: vgg_model = VGG_16(spatial_size=spatial_size, classes=n_exp, channels=3, weights_path='VGG_Face_Deep_16.h5') vgg_model.compile(loss='categorical_crossentropy', optimizer=adam, metrics=[metrics.categorical_accuracy]) svm_classifier = SVC(kernel='linear', C=1) #################################################################################### ############ for tensorboard ############### if tensorboard_flag == 1: cat_path = tensorboard_path + str(sub) + "/" os.mkdir(cat_path) tbCallBack = keras.callbacks.TensorBoard(log_dir=cat_path, write_graph=True) cat_path2 = tensorboard_path + str(sub) + "spat/" os.mkdir(cat_path2) tbCallBack2 = keras.callbacks.TensorBoard(log_dir=cat_path2, write_graph=True) ############################################# Train_X, Train_Y, Test_X, Test_Y, Test_Y_gt, X, y, test_X, test_y = restructure_data( sub, SubperdB, labelperSub, subjects, n_exp, r, w, timesteps_TIM, channel) # Special Loading for 4-Channel if channel_flag == 1: _, _, _, _, _, Train_X_Strain, Train_Y_Strain, Test_X_Strain, Test_Y_Strain = restructure_data( sub, SubperdB_strain, labelperSub, subjects, n_exp, r, w, timesteps_TIM, 1) # verify # sanity_check_image(Test_X_Strain, 1, spatial_size) # Concatenate Train X & Train_X_Strain X = np.concatenate((X, Train_X_Strain), axis=1) test_X = np.concatenate((test_X, Test_X_Strain), axis=1) total_channel = 4 elif channel_flag == 2: _, _, _, _, _, Train_X_Strain, Train_Y_Strain, Test_X_Strain, Test_Y_Strain = restructure_data( sub, SubperdB_strain, labelperSub, subjects, n_exp, r, w, timesteps_TIM, 1) _, _, _, _, _, Train_X_Gray, Train_Y_Gray, Test_X_Gray, Test_Y_Gray = restructure_data( sub, SubperdB_gray, labelperSub, subjects, n_exp, r, w, timesteps_TIM, 1) # Concatenate Train_X_Strain & Train_X & Train_X_gray X = np.concatenate((X, Train_X_Strain, Train_X_gray), axis=1) test_X = np.concatenate((test_X, Test_X_Strain, Test_X_gray), axis=1) total_channel = 5 elif channel_flag == 3: _, _, _, _, _, Train_X_Strain, Train_Y_Strain, Test_X_Strain, Test_Y_Strain = restructure_data( sub, SubperdB_strain, labelperSub, subjects, n_exp, r, w, timesteps_TIM, 3) elif channel_flag == 4: _, _, _, _, _, Train_X_Strain, Train_Y_Strain, Test_X_Strain, Test_Y_Strain = restructure_data( sub, SubperdB_strain, labelperSub, subjects, n_exp, r, w, timesteps_TIM, 3) _, _, _, _, _, Train_X_Gray, Train_Y_Gray, Test_X_Gray, Test_Y_Gray = restructure_data( sub, SubperdB_gray, labelperSub, subjects, n_exp, r, w, timesteps_TIM, 3) ############### check gpu resources #################### gpu_observer() ######################################################## ##################### Training & Testing ######################### # conv weights must be freezed for transfer learning if finetuning_flag == 1: for layer in vgg_model.layers[:33]: layer.trainable = False if channel_flag == 3 or channel_flag == 4: for layer in vgg_model_strain.layers[:33]: layer.trainable = False if channel_flag == 4: for layer in vgg_model_gray.layers[:33]: layer.trainable = False if train_spatial_flag == 1 and train_temporal_flag == 1: # Spatial Training if tensorboard_flag == 1: vgg_model.fit(X, y, batch_size=batch_size, epochs=spatial_epochs, shuffle=True, callbacks=[tbCallBack2]) elif channel_flag == 3 or channel_flag == 4: vgg_model.fit(X, y, batch_size=batch_size, epochs=spatial_epochs, shuffle=True, callbacks=[history, stopping]) vgg_model_strain.fit(Train_X_Strain, y, batch_size=batch_size, epochs=spatial_epochs, shuffle=True, callbacks=[stopping]) model_strain = record_weights(vgg_model_strain, spatial_weights_name_strain, sub, flag) output_strain = model_strain.predict(Train_X_Strain, batch_size=batch_size) if channel_flag == 4: vgg_model_gray.fit(Train_X_Gray, y, batch_size=batch_size, epochs=spatial_epochs, shuffle=True, callbacks=[stopping]) model_gray = record_weights(vgg_model_gray, spatial_weights_name_gray, sub, flag) output_gray = model_gray.predict(Train_X_Gray, batch_size=batch_size) else: vgg_model.fit(X, y, batch_size=batch_size, epochs=spatial_epochs, shuffle=True, callbacks=[history, stopping]) # record f1 and loss record_loss_accuracy(db_home, train_id, dB, history) # save vgg weights model = record_weights(vgg_model, spatial_weights_name, sub, flag) # Spatial Encoding output = model.predict(X, batch_size=batch_size) # concatenate features for temporal enrichment if channel_flag == 3: output = np.concatenate((output, output_strain), axis=1) elif channel_flag == 4: output = np.concatenate((output, output_strain, output_gray), axis=1) features = output.reshape(int(Train_X.shape[0]), timesteps_TIM, output.shape[1]) # Temporal Training if tensorboard_flag == 1: temporal_model.fit(features, Train_Y, batch_size=batch_size, epochs=temporal_epochs, callbacks=[tbCallBack]) else: temporal_model.fit(features, Train_Y, batch_size=batch_size, epochs=temporal_epochs) # save temporal weights temporal_model = record_weights(temporal_model, temporal_weights_name, sub, 't') # let the flag be t # Testing output = model.predict(test_X, batch_size=batch_size) if channel_flag == 3 or channel_flag == 4: output_strain = model_strain.predict(Test_X_Strain, batch_size=batch_size) if channel_flag == 4: output_gray = model_gray.predict(Test_X_Gray, batch_size=batch_size) # concatenate features for temporal enrichment if channel_flag == 3: output = np.concatenate((output, output_strain), axis=1) elif channel_flag == 4: output = np.concatenate((output, output_strain, output_gray), axis=1) features = output.reshape(Test_X.shape[0], timesteps_TIM, output.shape[1]) predict = temporal_model.predict_classes(features, batch_size=batch_size) ############################################################## #################### Confusion Matrix Construction ############# print(predict) print(Test_Y_gt) ct = confusion_matrix(Test_Y_gt, predict) # check the order of the CT order = np.unique(np.concatenate((predict, Test_Y_gt))) # create an array to hold the CT for each CV mat = np.zeros((n_exp, n_exp)) # put the order accordingly, in order to form the overall ConfusionMat for m in range(len(order)): for n in range(len(order)): mat[int(order[m]), int(order[n])] = ct[m, n] tot_mat = mat + tot_mat ################################################################ #################### cumulative f1 plotting ###################### microAcc = np.trace(tot_mat) / np.sum(tot_mat) [f1, precision, recall] = fpr(tot_mat, n_exp) file = open( db_home + 'Classification/' + 'Result/' + dB + '/f1_' + str(train_id) + '.txt', 'a') file.write(str(f1) + "\n") file.close() ################################################################## ################# write each CT of each CV into .txt file ##################### record_scores(db_home, dB, ct, sub, order, tot_mat, n_exp, subjects) war = weighted_average_recall(tot_mat, n_exp, samples) uar = unweighted_average_recall(tot_mat, n_exp) print("war: " + str(war)) print("uar: " + str(uar)) ############################################################################### ################## free memory #################### del vgg_model del temporal_model del model del Train_X, Test_X, X, y if channel_flag == 1: del Train_X_Strain, Test_X_Strain, Train_Y_Strain, Train_Y_Strain elif channel_flag == 2: del Train_X_Strain, Test_X_Strain, Train_Y_Strain, Train_Y_Strain, Train_X_Gray, Test_X_Gray, Train_Y_Gray, Test_Y_Gray elif channel_flag == 3: del vgg_model_strain, model_strain del Train_X_Strain, Test_X_Strain, Train_Y_Strain, Train_Y_Strain elif channel_flag == 4: del Train_X_Strain, Test_X_Strain, Train_Y_Strain, Train_Y_Strain, Train_X_Gray, Test_X_Gray, Train_Y_Gray, Test_Y_Gray del vgg_model_gray, vgg_model_strain, model_gray, model_strain gc.collect() ###################################################
def train_ram(batch_size, spatial_epochs, temporal_epochs, train_id, list_dB, spatial_size, flag, objective_flag, tensorboard): ############## Path Preparation ###################### root_db_path = "/media/ice/OS/Datasets/" tensorboard_path = "/home/ice/Documents/Micro-Expression/tensorboard/" if os.path.isdir(root_db_path + 'Weights/' + str(train_id)) == False: os.mkdir(root_db_path + 'Weights/' + str(train_id)) ###################################################### ############## Variables ################### dB = list_dB[0] r, w, subjects, samples, n_exp, VidPerSubject, timesteps_TIM, data_dim, channel, table, listOfIgnoredSamples, db_home, db_images, cross_db_flag = load_db( root_db_path, list_dB, spatial_size, objective_flag) # avoid confusion if cross_db_flag == 1: list_samples = listOfIgnoredSamples # total confusion matrix to be used in the computation of f1 score tot_mat = np.zeros((n_exp, n_exp)) history = LossHistory() stopping = EarlyStopping(monitor='loss', min_delta=0, mode='min') ############################################ ############## Flags #################### tensorboard_flag = tensorboard resizedFlag = 1 train_spatial_flag = 0 train_temporal_flag = 0 svm_flag = 0 finetuning_flag = 0 cam_visualizer_flag = 0 channel_flag = 0 if flag == 'st': train_spatial_flag = 1 train_temporal_flag = 1 finetuning_flag = 1 elif flag == 's': train_spatial_flag = 1 finetuning_flag = 1 elif flag == 't': train_temporal_flag = 1 elif flag == 'nofine': svm_flag = 1 elif flag == 'scratch': train_spatial_flag = 1 train_temporal_flag = 1 elif flag == 'st4se' or flag == 'st4se_cde': train_spatial_flag = 1 train_temporal_flag = 1 channel_flag = 1 elif flag == 'st7se' or flag == 'st7se_cde': train_spatial_flag = 1 train_temporal_flag = 1 channel_flag = 2 elif flag == 'st4te' or flag == 'st4te_cde': train_spatial_flag = 1 train_temporal_flag = 1 channel_flag = 3 elif flag == 'st7te' or flag == 'st7te_cde': train_spatial_flag = 1 train_temporal_flag = 1 channel_flag = 4 ######################################### ############ Reading Images and Labels ################ if cross_db_flag == 1: SubperdB = Read_Input_Images_SAMM_CASME(db_images, list_samples, listOfIgnoredSamples, dB, resizedFlag, table, db_home, spatial_size, channel) else: SubperdB = Read_Input_Images(db_images, listOfIgnoredSamples, dB, resizedFlag, table, db_home, spatial_size, channel, objective_flag) labelperSub = label_matching(db_home, dB, subjects, VidPerSubject) print("Loaded Images into the tray...") print("Loaded Labels into the tray...") if channel_flag == 1: aux_db1 = list_dB[1] db_strain_img = root_db_path + aux_db1 + "/" + aux_db1 + "/" if cross_db_flag == 1: SubperdB = Read_Input_Images_SAMM_CASME( db_strain_img, list_samples, listOfIgnoredSamples, aux_db1, resizedFlag, table, db_home, spatial_size, 1) else: SubperdB_strain = Read_Input_Images(db_strain_img, listOfIgnoredSamples, aux_db1, resizedFlag, table, db_home, spatial_size, 1, objective_flag) elif channel_flag == 2: aux_db1 = list_dB[1] aux_db2 = list_dB[2] db_strain_img = root_db_path + aux_db1 + "/" + aux_db1 + "/" db_gray_img = root_db_path + aux_db2 + "/" + aux_db2 + "/" if cross_db_flag == 1: SubperdB_strain = Read_Input_Images_SAMM_CASME( db_strain_img, list_samples, listOfIgnoredSamples, aux_db1, resizedFlag, table, db_home, spatial_size, 1) SubperdB_gray = Read_Input_Images_SAMM_CASME( db_gray_img, list_samples, listOfIgnoredSamples, aux_db2, resizedFlag, table, db_home, spatial_size, 1) else: SubperdB_strain = Read_Input_Images(db_strain_img, listOfIgnoredSamples, aux_db1, resizedFlag, table, db_home, spatial_size, 1, objective_flag) SubperdB_gray = Read_Input_Images(db_gray_img, listOfIgnoredSamples, aux_db2, resizedFlag, table, db_home, spatial_size, 1, objective_flag) elif channel_flag == 3: aux_db1 = list_dB[1] db_strain_img = root_db_path + aux_db1 + "/" + aux_db1 + "/" if cross_db_flag == 1: SubperdB = Read_Input_Images_SAMM_CASME( db_strain_img, list_samples, listOfIgnoredSamples, aux_db1, resizedFlag, table, db_home, spatial_size, 3) else: SubperdB_strain = Read_Input_Images(db_strain_img, listOfIgnoredSamples, aux_db1, resizedFlag, table, db_home, spatial_size, 3, objective_flag) elif channel_flag == 4: aux_db1 = list_dB[1] aux_db2 = list_dB[2] db_strain_img = root_db_path + aux_db1 + "/" + aux_db1 + "/" db_gray_img = root_db_path + aux_db2 + "/" + aux_db2 + "/" if cross_db_flag == 1: SubperdB_strain = Read_Input_Images_SAMM_CASME( db_strain_img, list_samples, listOfIgnoredSamples, aux_db1, resizedFlag, table, db_home, spatial_size, 3) SubperdB_gray = Read_Input_Images_SAMM_CASME( db_gray_img, list_samples, listOfIgnoredSamples, aux_db2, resizedFlag, table, db_home, spatial_size, 3) else: SubperdB_strain = Read_Input_Images(db_strain_img, listOfIgnoredSamples, aux_db1, resizedFlag, table, db_home, spatial_size, 3, objective_flag) SubperdB_gray = Read_Input_Images(db_gray_img, listOfIgnoredSamples, aux_db2, resizedFlag, table, db_home, spatial_size, 3, objective_flag) ####################################################### ########### Model Configurations ####################### sgd = optimizers.SGD(lr=0.0001, decay=1e-7, momentum=0.9, nesterov=True) adam = optimizers.Adam(lr=0.00001, decay=0.000001) # Different Conditions for Temporal Learning ONLY if train_spatial_flag == 0 and train_temporal_flag == 1 and dB != 'CASME2_Optical': data_dim = spatial_size * spatial_size elif train_spatial_flag == 0 and train_temporal_flag == 1 and dB == 'CASME2_Optical': data_dim = spatial_size * spatial_size * 3 elif channel_flag == 3: data_dim = 8192 elif channel_flag == 4: data_dim = 12288 else: data_dim = 4096 ######################################################## ########### Training Process ############ baseline_history = LossHistory() action_history = LossHistory() for sub in range(subjects): spatial_weights_name = root_db_path + 'Weights/' + str( train_id) + '/vgg_spatial_' + str(train_id) + '_' + str(dB) + '_' spatial_weights_name_strain = root_db_path + 'Weights/' + str( train_id) + '/vgg_spatial_strain_' + str(train_id) + '_' + str( dB) + '_' spatial_weights_name_gray = root_db_path + 'Weights/' + str( train_id) + '/vgg_spatial_gray_' + str(train_id) + '_' + str( dB) + '_' temporal_weights_name = root_db_path + 'Weights/' + str( train_id) + '/temporal_ID_' + str(train_id) + '_' + str(dB) + '_' ae_weights_name = root_db_path + 'Weights/' + str( train_id) + '/autoencoder_' + str(train_id) + '_' + str(dB) + '_' ae_weights_name_strain = root_db_path + 'Weights/' + str( train_id) + '/autoencoder_strain_' + str(train_id) + '_' + str( dB) + '_' ############ for tensorboard ############### ############################################# Train_X, Train_Y, Test_X, Test_Y, Test_Y_gt, X, y, test_X, test_y = restructure_data( sub, SubperdB, labelperSub, subjects, n_exp, r, w, timesteps_TIM, channel) # Special Loading for 4-Channel if channel_flag == 1: _, _, _, _, _, Train_X_Strain, Train_Y_Strain, Test_X_Strain, Test_Y_Strain = restructure_data( sub, SubperdB_strain, labelperSub, subjects, n_exp, r, w, timesteps_TIM, 1) # verify # sanity_check_image(Test_X_Strain, 1, spatial_size) # Concatenate Train X & Train_X_Strain X = np.concatenate((X, Train_X_Strain), axis=1) test_X = np.concatenate((test_X, Test_X_Strain), axis=1) total_channel = 4 elif channel_flag == 2: _, _, _, _, _, Train_X_Strain, Train_Y_Strain, Test_X_Strain, Test_Y_Strain = restructure_data( sub, SubperdB_strain, labelperSub, subjects, n_exp, r, w, timesteps_TIM, 1) _, _, _, _, _, Train_X_Gray, Train_Y_Gray, Test_X_Gray, Test_Y_Gray = restructure_data( sub, SubperdB_gray, labelperSub, subjects, n_exp, r, w, timesteps_TIM, 1) # Concatenate Train_X_Strain & Train_X & Train_X_gray X = np.concatenate((X, Train_X_Strain, Train_X_gray), axis=1) test_X = np.concatenate((test_X, Test_X_Strain, Test_X_gray), axis=1) total_channel = 5 elif channel_flag == 3: _, _, _, _, _, Train_X_Strain, Train_Y_Strain, Test_X_Strain, Test_Y_Strain = restructure_data( sub, SubperdB_strain, labelperSub, subjects, n_exp, r, w, timesteps_TIM, 3) elif channel_flag == 4: _, _, _, _, _, Train_X_Strain, Train_Y_Strain, Test_X_Strain, Test_Y_Strain = restructure_data( sub, SubperdB_strain, labelperSub, subjects, n_exp, r, w, timesteps_TIM, 3) _, _, _, _, _, Train_X_Gray, Train_Y_Gray, Test_X_Gray, Test_Y_Gray = restructure_data( sub, SubperdB_gray, labelperSub, subjects, n_exp, r, w, timesteps_TIM, 3) ############### Reinitialization & weights reset of models ######################## lt = np.array((1, 100)) no_patches = 4 scale = (224 - lt[0]) / no_patches print(lt.shape) print(X[0].shape) glimpse_seq = [] for item in X: # print(item.shape) glimpse_seq_temp = create_glimpse(item, scale, no_patches, lt) glimpse_seq += [glimpse_seq_temp] # print(glimpse_seq.shape) # glimpse_seq = create_glimpse(X[0], scale, no_patches, lt) # print(glimpse_seq.shape) glimpse_seq = np.asarray(glimpse_seq) glimpse_seq = glimpse_seq.reshape(glimpse_seq.shape[0], glimpse_seq.shape[2], glimpse_seq.shape[3], glimpse_seq.shape[4]) # print(glimpse_seq.shape) model = Recurrent_Attention_Network(glimpse_seq, lt, 256, 1, 112, 256, 56) baseline_model = Recurrent_Attention_Network(glimpse_seq, lt, 256, 1, 112, 256, 56) #################################################################################### ############### check gpu resources #################### gpu_observer() ######################################################## ##################### Training & Testing ######################### lt = lt.reshape(1, 2) lt = np.repeat(lt, glimpse_seq.shape[0], axis=0) model.fit([glimpse_seq, lt], [y], callbacks=[action_history], epochs=spatial_epochs) ht_model = Model(inputs=model.input, outputs=model.layers[8].output) out, ht = ht_model.predict([glimpse_seq, lt]) lt, log_pi = location_network(ht) # reward p_class = model.predict([glimpse_seq, lt]) p_class = (p_class == p_class[:].max(axis=1)[:, None]).astype(int) print(p_class) reward = K.cast((p_class == y), dtype='float32') reward = reward.eval() print(reward) # train baseline with reward as labels baseline_model = Model(inputs=baseline_model.input, outputs=baseline_model.layers[10].output) baseline_model.compile(loss=['mean_squared_error'], optimizer=adam, metrics=[metrics.categorical_accuracy]) baseline_model.fit([glimpse_seq, lt], [reward], callbacks=[baseline_history], epochs=spatial_epochs) # adjusted reward based on baselines adjusted_reward = reward - baseline_model.predict([glimpse_seq, lt]) # reinforce_loss = sum(-log_pi * adjusted_reward, axis = 1) # log_pi = log_pi.reshape(2) log_pi = np.repeat(log_pi, 5, axis=1) log_pi = log_pi.T reinforce_loss = np.mean(np.dot(adjusted_reward, -log_pi)) print(reinforce_loss) hybrid_loss = float(action_history.losses[0]) + float( baseline_history.losses[0]) + reinforce_loss print(hybrid_loss) ############################################################## #################### Confusion Matrix Construction ############# # print (predict) # print (Test_Y_gt) # ct = confusion_matrix(Test_Y_gt,predict) # # check the order of the CT # order = np.unique(np.concatenate((predict,Test_Y_gt))) # # create an array to hold the CT for each CV # mat = np.zeros((n_exp,n_exp)) # # put the order accordingly, in order to form the overall ConfusionMat # for m in range(len(order)): # for n in range(len(order)): # mat[int(order[m]),int(order[n])]=ct[m,n] # tot_mat = mat + tot_mat ################################################################ #################### cumulative f1 plotting ###################### # microAcc = np.trace(tot_mat) / np.sum(tot_mat) # [f1,precision,recall] = fpr(tot_mat,n_exp) # file = open(db_home+'Classification/'+ 'Result/'+dB+'/f1_' + str(train_id) + '.txt', 'a') # file.write(str(f1) + "\n") # file.close() ################################################################## ################# write each CT of each CV into .txt file ##################### # record_scores(db_home, dB, ct, sub, order, tot_mat, n_exp, subjects) # war = weighted_average_recall(tot_mat, n_exp, samples) # uar = unweighted_average_recall(tot_mat, n_exp) # print("war: " + str(war)) # print("uar: " + str(uar)) ############################################################################### ################## free memory #################### gc.collect() ################################################### # python main.py --train='./train_ram.py' --batch_size=30 --dB='CASME2_TIM' --flag='st' --spatial_size=224 --objective_flag=0
def train_c3d(batch_size, spatial_epochs, train_id, list_dB, spatial_size, objective_flag, tensorboard): ############## Path Preparation ###################### root_db_path = "/media/ostalo/MihaGarafolj/ME_data/" #root_db_path = '/home/miha/Documents/ME_data/' tensorboard_path = root_db_path + "tensorboard/" if os.path.isdir(root_db_path + 'Weights/' + str(train_id)) == False: os.mkdir(root_db_path + 'Weights/' + str(train_id)) ###################################################### ############## Variables ################### dB = list_dB[0] r, w, subjects, samples, n_exp, VidPerSubject, vidList, timesteps_TIM, data_dim, channel, table, listOfIgnoredSamples, db_home, db_images, cross_db_flag = load_db( root_db_path, list_dB, spatial_size, objective_flag) # avoid confusion if cross_db_flag == 1: list_samples = listOfIgnoredSamples # total confusion matrix to be used in the computation of f1 score tot_mat = np.zeros((n_exp, n_exp)) history = LossHistory() stopping = EarlyStopping(monitor='loss', min_delta=0, mode='min', patience=5) ############################################ ############## Flags #################### tensorboard_flag = tensorboard resizedFlag = 1 #svm_flag = 0 #finetuning_flag = 0 cam_visualizer_flag = 0 #channel_flag = 0 ######################################### ############ Reading Images and Labels ################ if cross_db_flag == 1: SubperdB = Read_Input_Images_SAMM_CASME(db_images, list_samples, listOfIgnoredSamples, dB, resizedFlag, table, db_home, spatial_size, channel) else: SubperdB = Read_Input_Images(db_images, listOfIgnoredSamples, dB, resizedFlag, table, db_home, spatial_size, channel, objective_flag) gc.collect() labelperSub = label_matching(db_home, dB, subjects, VidPerSubject) print("Loaded Images into the tray.") print("Loaded Labels into the tray.") ####################################################### # PREPROCESSING STEPS # optical flow SubperdB = optical_flow_2d(SubperdB, samples, r, w, timesteps_TIM, compareFrame1=True) gc.collect() ########### Model Configurations ####################### #K.set_image_dim_ordering('th') # config = tf.ConfigProto() # config.gpu_options.allow_growth = True # config.gpu_options.per_process_gpu_memory_fraction = 0.8 # K.tensorflow_backend.set_session(tf.Session(config=config)) ######################################################## print("Beginning training process.") ########### Training Process ############ subjects_todo = read_subjects_todo(db_home, dB, train_id, subjects) for sub in subjects_todo: print("**** starting subject " + str(sub) + " ****") ############### Reinitialization & weights reset of models ######################## adam = optimizers.Adam(lr=0.00001, decay=0.000001) c3d_model = c3d_2stream(spatial_size=spatial_size, temporal_size=timesteps_TIM, classes=n_exp, channels=2) c3d_model.compile(loss='categorical_crossentropy', optimizer=adam, metrics=[metrics.categorical_accuracy]) #################################################################################### ############ for tensorboard ############### if tensorboard_flag == 1: cat_path2 = tensorboard_path + str(train_id) + str(sub) + "c3d/" if os.path.exists(cat_path2): os.rmdir(cat_path2) os.mkdir(cat_path2) tbCallBack2 = keras.callbacks.TensorBoard(log_dir=cat_path2, write_graph=True) ############################################# Train_X, Train_Y, Test_X, Test_Y, Test_Y_gt, X, y, test_X, test_y = restructure_data( sub, SubperdB, labelperSub, subjects, n_exp, r, w, timesteps_TIM, 2) #Train_X, Train_Y, Train_Y_gt = upsample_training_set(Train_X, Train_Y, Train_Y_gt) ############### check gpu resources #################### # gpu_observer() ######################################################## print("Beginning training & testing.") ##################### Training & Testing ######################### # Reshape for optical flow 2stream training input_u = Train_X[:, :, :, :, 0].reshape(Train_X.shape[0], timesteps_TIM, 224, 224, 1) input_v = Train_X[:, :, :, :, 1].reshape(Train_X.shape[0], timesteps_TIM, 224, 224, 1) print("Beginning c3d training.") # Spatial Training if tensorboard_flag == 1: c3d_model.fit([input_u, input_v], Train_Y, batch_size=batch_size, epochs=spatial_epochs, shuffle=True, callbacks=[history, stopping, tbCallBack2]) else: c3d_model.fit([input_u, input_v], Train_Y, batch_size=batch_size, epochs=spatial_epochs, shuffle=True, callbacks=[history, stopping]) print(".record f1 and loss") # record f1 and loss record_loss_accuracy(db_home, train_id, dB, history) print("Beginning testing.") print(".predicting with c3d_model") # Testing input_u = Test_X[:, :, :, :, 0].reshape(Test_X.shape[0], timesteps_TIM, 224, 224, 1) input_v = Test_X[:, :, :, :, 1].reshape(Test_X.shape[0], timesteps_TIM, 224, 224, 1) predict_values = c3d_model.predict([input_u, input_v], batch_size=batch_size) predict = np.array([np.argmax(x) for x in predict_values]) ############################################################## #################### Confusion Matrix Construction ############# print(predict) print(Test_Y_gt.astype(int)) print(".writing predicts to file") file = open( db_home + 'Classification/' + 'Result/' + '/predicts_' + str(train_id) + '.txt', 'a') for i in range(len(vidList[sub])): file.write("sub_" + str(sub) + "," + str(vidList[sub][i]) + "," + str(predict.astype(list)[i]) + "," + str(Test_Y_gt.astype(int).astype(list)[i]) + "\n") file.close() file = open( db_home + 'Classification/' + 'Result/' + '/predictedvalues_' + str(train_id) + '.txt', 'a') for i in range(len(vidList[sub])): file.write("sub_" + str(sub) + "," + str(vidList[sub][i]) + "," + ','.join(str(e) for e in predict_values[i]) + "," + str(Test_Y_gt.astype(int).astype(list)[i]) + "\n") file.close() ct = confusion_matrix(Test_Y_gt, predict) # check the order of the CT order = np.unique(np.concatenate((predict, Test_Y_gt))) # create an array to hold the CT for each CV mat = np.zeros((n_exp, n_exp)) # put the order accordingly, in order to form the overall ConfusionMat for m in range(len(order)): for n in range(len(order)): mat[int(order[m]), int(order[n])] = ct[m, n] tot_mat = mat + tot_mat ################################################################ #################### cumulative f1 plotting ###################### microAcc = np.trace(tot_mat) / np.sum(tot_mat) [f1, precision, recall] = fpr(tot_mat, n_exp) file = open( db_home + 'Classification/' + 'Result/' + '/f1_' + str(train_id) + '.txt', 'a') file.write(str(f1) + "\n") file.close() ################################################################## ################# write each CT of each CV into .txt file ##################### record_scores(db_home, dB, ct, sub, order, tot_mat, n_exp, subjects) war = weighted_average_recall(tot_mat, n_exp, samples) uar = unweighted_average_recall(tot_mat, n_exp) print("war: " + str(war)) print("uar: " + str(uar)) ############################################################################### ################## free memory #################### del c3d_model del Train_X, Test_X, Train_Y, Test_Y K.get_session().close() cfg = K.tf.ConfigProto() cfg.gpu_options.allow_growth = True K.set_session(K.tf.Session(config=cfg)) gc.collect()
def train(batch_size, spatial_epochs, temporal_epochs, train_id, list_dB, spatial_size, flag, objective_flag, tensorboard): ############## Path Preparation ###################### root_db_path = "/home/zhangke/database/" tensorboard_path = root_db_path + "tensorboard/" if os.path.isdir(root_db_path + 'Weights/' + str(train_id)) == False: os.mkdir(root_db_path + 'Weights/' + str(train_id)) ###################################################### ############## Variables ################### dB = list_dB[0] r, w, subjects, samples, n_exp, VidPerSubject, timesteps_TIM, data_dim, channel, table, listOfIgnoredSamples, db_home, db_images, cross_db_flag = load_db( root_db_path, list_dB, spatial_size, objective_flag) # avoid confusion if cross_db_flag == 1: list_samples = listOfIgnoredSamples # total confusion matrix to be used in the computation of f1 score tot_mat = np.zeros((n_exp, n_exp)) history = LossHistory() stopping = EarlyStopping(monitor='loss', min_delta=0, mode='min') ############################################ ############## Flags #################### tensorboard_flag = tensorboard resizedFlag = 1 train_spatial_flag = 0 train_temporal_flag = 0 svm_flag = 0 finetuning_flag = 0 cam_visualizer_flag = 0 channel_flag = 0 if flag == 'st': train_spatial_flag = 1 train_temporal_flag = 1 finetuning_flag = 1 ######################################### ############ Reading Images and Labels ################ if cross_db_flag == 1: SubperdB = Read_Input_Images_SAMM_CASME(db_images, list_samples, listOfIgnoredSamples, dB, resizedFlag, table, db_home, spatial_size, channel) else: SubperdB = Read_Input_Images(db_images, listOfIgnoredSamples, dB, resizedFlag, table, db_home, spatial_size, channel, objective_flag) labelperSub = label_matching(db_home, dB, subjects, VidPerSubject) print("Loaded Images into the tray.subjects", subjects) print("Loaded Labels into the tray.") ########### Model Configurations ####################### K.set_image_dim_ordering('th') sgd = optimizers.SGD(lr=0.0001, decay=1e-7, momentum=0.9, nesterov=True) adam = optimizers.Adam(lr=0.00001, decay=0.000001) data_dim = 4096 ######################################################## print("Beginning training process.") ########### Training Process ############ aaa = 1 for sub in range(subjects): print(".starting subject" + str(sub)) gpu_observer() spatial_weights_name = root_db_path + 'Weights/' + str( train_id) + '/vgg_spatial_' + str(train_id) + '_' + str(dB) + '_' spatial_weights_name_strain = root_db_path + 'Weights/' + str( train_id) + '/vgg_spatial_strain_' + str(train_id) + '_' + str( dB) + '_' spatial_weights_name_gray = root_db_path + 'Weights/' + str( train_id) + '/vgg_spatial_gray_' + str(train_id) + '_' + str( dB) + '_' temporal_weights_name = root_db_path + 'Weights/' + str( train_id) + '/temporal_ID_' + str(train_id) + '_' + str(dB) + '_' ae_weights_name = root_db_path + 'Weights/' + str( train_id) + '/autoencoder_' + str(train_id) + '_' + str(dB) + '_' ae_weights_name_strain = root_db_path + 'Weights/' + str( train_id) + '/autoencoder_strain_' + str(train_id) + '_' + str( dB) + '_' ############### Reinitialization & weights reset of models ######################## temporal_model = temporal_module(data_dim=data_dim, timesteps_TIM=timesteps_TIM, classes=n_exp) temporal_model.compile(loss='categorical_crossentropy', optimizer=adam, metrics=[metrics.categorical_accuracy]) if channel_flag == 0: vgg_model = VGG_16(spatial_size=spatial_size, classes=n_exp, channels=3, weights_path='VGG_Face_Deep_16.h5') if finetuning_flag == 1: for layer in vgg_model.layers[:33]: layer.trainable = False vgg_model.compile(loss='categorical_crossentropy', optimizer=adam, metrics=[metrics.categorical_accuracy]) ############ for tensorboard ############### if tensorboard_flag == 1: cat_path = tensorboard_path + str(sub) + "/" os.mkdir(cat_path) tbCallBack = keras.callbacks.TensorBoard(log_dir=cat_path, write_graph=True) cat_path2 = tensorboard_path + str(sub) + "spatial/" os.mkdir(cat_path2) tbCallBack2 = keras.callbacks.TensorBoard(log_dir=cat_path2, write_graph=True) ############################################# Train_X, Train_Y, Test_X, Test_Y, Test_Y_gt, X, y, test_X, test_y = restructure_data( sub, SubperdB, labelperSub, subjects, n_exp, r, w, timesteps_TIM, channel) ############### check gpu resources #################### gpu_observer() ######################################################## print("Beginning training & testing.") ##################### Training & Testing ######################### if train_spatial_flag == 1 and train_temporal_flag == 1: print("Beginning spatial training.") # Spatial Training if tensorboard_flag == 1: vgg_model.fit(X, y, batch_size=batch_size, epochs=spatial_epochs, shuffle=True, callbacks=[history, stopping, tbCallBack2]) else: vgg_model.fit(X, y, batch_size=batch_size, epochs=spatial_epochs, shuffle=True, callbacks=[history, stopping]) print(".record f1 and loss") # record f1 and loss record_loss_accuracy(db_home, train_id, dB, history) print(".save vgg weights") # save vgg weights model = record_weights(vgg_model, spatial_weights_name, sub, flag) print(".spatial encoding") # Spatial Encoding output = model.predict(X, batch_size=batch_size) features = output.reshape(int(Train_X.shape[0]), timesteps_TIM, output.shape[1]) print("Beginning temporal training.") # Temporal Training if tensorboard_flag == 1: temporal_model.fit(features, Train_Y, batch_size=batch_size, epochs=temporal_epochs, callbacks=[tbCallBack]) else: temporal_model.fit(features, Train_Y, batch_size=batch_size, epochs=temporal_epochs) print(".save temportal weights") # save temporal weights temporal_model = record_weights(temporal_model, temporal_weights_name, sub, 't') # let the flag be t print("Beginning testing.") print(".predicting with spatial model") # Testing output = model.predict(test_X, batch_size=batch_size) print(".outputing features") features = output.reshape(Test_X.shape[0], timesteps_TIM, output.shape[1]) print(".predicting with temporal model") predict = temporal_model.predict(features) predict = np.argmax(predict, axis=1) #predict = temporal_model.predict_classes(features, batch_size=batch_size) #################### Confusion Matrix Construction ############# print(predict) print(Test_Y_gt.astype(int)) print(".writing predicts to file") file = open( db_home + 'Classification/' + 'Result/' + dB + '/predicts_' + str(train_id) + '.txt', 'a') file.write("predicts_sub_" + str(sub) + "," + (",".join(repr(e) for e in predict.astype(list))) + "\n") file.write("actuals_sub_" + str(sub) + "," + (",".join( repr(e) for e in Test_Y_gt.astype(int).astype(list))) + "\n") file.close() ct = confusion_matrix(Test_Y_gt, predict) # check the order of the CT order = np.unique(np.concatenate((predict, Test_Y_gt))) # create an array to hold the CT for each CV mat = np.zeros((n_exp, n_exp)) # put the order accordingly, in order to form the overall ConfusionMat for m in range(len(order)): for n in range(len(order)): mat[int(order[m]), int(order[n])] = ct[m, n] tot_mat = mat + tot_mat #################### cumulative f1 plotting ###################### microAcc = np.trace(tot_mat) / np.sum(tot_mat) [f1, precision, recall] = fpr(tot_mat, n_exp) file = open( db_home + 'Classification/' + 'Result/' + dB + '/f1_' + str(train_id) + '.txt', 'a') file.write(str(f1) + "\n") file.close() ################################################################## ################# write each CT of each CV into .txt file ##################### record_scores(db_home, dB, ct, sub, order, tot_mat, n_exp, subjects) war = weighted_average_recall(tot_mat, n_exp, samples) uar = unweighted_average_recall(tot_mat, n_exp) print("war: " + str(war)) print("uar: " + str(uar)) ############################################################################### ################## free memory #################### del vgg_model del temporal_model del model del Train_X, Test_X, X, y gc.collect()