Exemple #1
0
def get_model(model_name, model_prefix=''):
    if model_name == 'voigt':
        mdl = models.VoigtModel(prefix=model_prefix)
    elif model_name == 'gauss':
        mdl = models.GaussianModel(prefix=model_prefix)
    elif model_name == 'constant':
        mdl = models.ConstantModel(prefix=model_prefix)
    elif model_name == 'linear':
        mdl = models.LinearModel(prefix=model_prefix)
    elif model_name == 'exp':
        mdl = models.ExponentialModel(prefix=model_prefix)
    elif model_name == 'logistic':
        mdl = models.StepModel(prefix=model_prefix, form='logistic')
    elif model_name == 'sine':
        mdl = models.SineModel(prefix=model_prefix)
    else:
        raise ValueError('Model name not recognized.')

    return mdl
Exemple #2
0
def test_height_and_fwhm_expression_evalution_in_builtin_models():
    """Assert models do not throw an ZeroDivisionError."""
    mod = models.GaussianModel()
    params = mod.make_params(amplitude=1.0, center=0.0, sigma=0.9)
    params.update_constraints()

    mod = models.LorentzianModel()
    params = mod.make_params(amplitude=1.0, center=0.0, sigma=0.9)
    params.update_constraints()

    mod = models.SplitLorentzianModel()
    params = mod.make_params(amplitude=1.0, center=0.0, sigma=0.9, sigma_r=1.0)
    params.update_constraints()

    mod = models.VoigtModel()
    params = mod.make_params(amplitude=1.0, center=0.0, sigma=0.9, gamma=1.0)
    params.update_constraints()

    mod = models.PseudoVoigtModel()
    params = mod.make_params(amplitude=1.0, center=0.0, sigma=0.9, fraction=0.5)
    params.update_constraints()

    mod = models.MoffatModel()
    params = mod.make_params(amplitude=1.0, center=0.0, sigma=0.9, beta=0.0)
    params.update_constraints()

    mod = models.Pearson7Model()
    params = mod.make_params(amplitude=1.0, center=0.0, sigma=0.9, expon=1.0)
    params.update_constraints()

    mod = models.StudentsTModel()
    params = mod.make_params(amplitude=1.0, center=0.0, sigma=0.9)
    params.update_constraints()

    mod = models.BreitWignerModel()
    params = mod.make_params(amplitude=1.0, center=0.0, sigma=0.9, q=0.0)
    params.update_constraints()

    mod = models.LognormalModel()
    params = mod.make_params(amplitude=1.0, center=0.0, sigma=0.9)
    params.update_constraints()

    mod = models.DampedOscillatorModel()
    params = mod.make_params(amplitude=1.0, center=0.0, sigma=0.9)
    params.update_constraints()

    mod = models.DampedHarmonicOscillatorModel()
    params = mod.make_params(amplitude=1.0, center=0.0, sigma=0.9, gamma=0.0)
    params.update_constraints()

    mod = models.ExponentialGaussianModel()
    params = mod.make_params(amplitude=1.0, center=0.0, sigma=0.9, gamma=0.0)
    params.update_constraints()

    mod = models.SkewedGaussianModel()
    params = mod.make_params(amplitude=1.0, center=0.0, sigma=0.9, gamma=0.0)
    params.update_constraints()

    mod = models.SkewedVoigtModel()
    params = mod.make_params(amplitude=1.0, center=0.0, sigma=0.9, gamma=0.0,
                             skew=0.0)
    params.update_constraints()

    mod = models.DoniachModel()
    params = mod.make_params(amplitude=1.0, center=0.0, sigma=0.9, gamma=0.0)
    params.update_constraints()

    mod = models.StepModel()
    for f in ('linear', 'arctan', 'erf', 'logistic'):
        params = mod.make_params(amplitude=1.0, center=0.0, sigma=0.9, form=f)
        params.update_constraints()

    mod = models.RectangleModel()
    for f in ('linear', 'arctan', 'erf', 'logistic'):
        params = mod.make_params(amplitude=1.0, center1=0.0, sigma1=0.0,
                                 center2=0.0, sigma2=0.0, form=f)
        params.update_constraints()
Exemple #3
0
 def fit_peak(self,
              roi=None,
              xpeak=None,
              sigma_guess=None,
              model_name='gauss-erf-const',
              **kwargs):
     """
     Main routine
     """
     # Exit if no roi
     if roi is None:
         self.fit = None
         self.model_name = None
     else:
         self.model_name = model_name
         # Start timer
         tic = time.time()
         # ---------
         # Setup ROI
         # ---------
         self.set_roi(roi)
         x = self.get_x_roi()
         y = self.get_y_roi()
         y_sig = self.get_y_sig_roi()
         x_widths = self.get_x_widths_roi()
         # ---------------------------
         # Guesses based on input data
         # ---------------------------
         # Set peak center to center of ROI if not given
         if xpeak is None:
             xpeak = (x[0] + x[-1]) / 2.
         # Guess sigma if not provided
         if sigma_guess is None:
             fwhm_guess = self.guess_fwhm(xpeak)
             sigma_guess = fwhm_guess / FWHM_SIG_RATIO
         # Heights at the sides of the ROI
         left_shelf_height = y[0]
         right_shelf_height = y[-1]
         # Line guess
         lin_slope = (y[-1] - y[0]) / (x[-1] - x[0])
         lin_intercept = y[0] - lin_slope * x[0]
         # Two peaks guess (33 and 66 percent through ROI)
         xpeak0 = x[0] + (x[-1] - x[0]) * 0.33
         xpeak1 = x[0] + (x[-1] - x[0]) * 0.66
         # Index of at the ROI center
         ix_half = int(round(float(len(x)) / 2.))
         # -------------------
         # Setup fitting model
         # -------------------
         if model_name == 'gauss-erf-const':
             # Models
             erf_mod = models.StepModel(form='erf', prefix='erf_')
             gauss_mod = models.GaussianModel(prefix='gauss_')
             bk_mod = models.ConstantModel(prefix='bk_')
             # Initialize parameters
             pars = erf_mod.make_params()
             pars.update(gauss_mod.make_params())
             pars.update(bk_mod.make_params())
             # Erfc (sigma and center are locked to gauss below)
             pars['erf_amplitude'].set(right_shelf_height -
                                       left_shelf_height,
                                       max=0.)
             # Gauss
             pars['gauss_center'].set(
                 xpeak
             )  # , min=xpeak - 2 * fwhm_guess, max=xpeak + 2 * fwhm_guess)
             pars['gauss_sigma'].set(sigma_guess)
             pars['gauss_amplitude'].set(np.sum(y * x_widths), min=0)
             # Background
             pars['bk_c'].set(left_shelf_height, min=0.)
             # Same center and sigma
             pars.add('erf_center', expr='gauss_center')
             pars.add('erf_sigma',
                      expr='gauss_sigma * {}'.format(FWHM_SIG_RATIO))
             self.model = gauss_mod + erf_mod + bk_mod
         elif model_name == 'double-gauss-line':
             # Models
             lin_mod = models.LinearModel(prefix='lin_')
             g0_mod = models.GaussianModel(prefix='gauss0_')
             g1_mod = models.GaussianModel(prefix='gauss1_')
             # Initialize parameters
             pars = lin_mod.make_params()
             pars.update(g0_mod.make_params())
             pars.update(g1_mod.make_params())
             # Line (background)
             pars['lin_slope'].set(lin_slope, max=0.)
             pars['lin_intercept'].set(lin_intercept)
             # Gauss 0 (left)
             pars['gauss0_center'].set(
                 xpeak0
             )  # , min=xpeak - 2 * fwhm_guess, max=xpeak + 2 * fwhm_guess)
             pars['gauss0_sigma'].set(sigma_guess)
             pars['gauss0_amplitude'].set(np.sum(y[:ix_half] *
                                                 x_widths[:ix_half]),
                                          min=0)
             # Gauss 1 (right)
             pars['gauss1_center'].set(
                 xpeak1
             )  # , min=xpeak - 2 * fwhm_guess, max=xpeak + 2 * fwhm_guess)
             pars['gauss1_sigma'].set(sigma_guess)
             pars['gauss1_amplitude'].set(np.sum(y[ix_half:] *
                                                 x_widths[ix_half:]),
                                          min=0)
             self.model = lin_mod + g0_mod + g1_mod
         else:
             raise NotImplementedError(
                 'Model ({}) not recognized'.format(model_name))
         # -----------
         # Perform fit
         # -----------
         try:
             self.fit = self.model.fit(y, pars, x=x, weights=1. / y_sig)
         except:
             print("[ERROR] Couldn't fit peak")
             self.fit = None
         if self.verbosity > 0:
             print('Fit time: {:.3f} seconds'.format(time.time() - tic))