Exemple #1
0
    def getSingleEventTable(self, event_name):
        """
        Returns pandas table containing all found events for given event name'
            * Primary mouse' meta data
            * Event start time
            * Event end time
            * Event duration
        Args:
            event_name (str): Event name e. g. Rearing
        Returns:
            DataFrame
        """
        data = defaultdict(list)
        for animal in self.getAnimalList():
            with mute_prints():
                eventTimeLine = EventTimeLine(self.conn,
                                                event_name,
                                                idA=animal.baseId,
                                                minFrame=self.detectionStartFrame,
                                                maxFrame=self.detectionEndFrame)

            for e in eventTimeLine.getEventList():
                data["RFID"]         .append(f"{animal.name}_{animal.RFID}")
                data["name"]         .append(f"{animal.name}")
                data["genotype"]     .append(f"{animal.genotype}")
                data["event_name"]   .append(event_name)
                data["start_sec"]    .append(e.startFrame / oneSecond)
                data["end_sec"]      .append(e.endFrame   / oneSecond)
                data["duration"]     .append(e.duration() / oneSecond)

        df = pd.DataFrame(data)
        df.insert(2, "time", pd.to_timedelta(df["start_sec"], unit="s"))

        return df.sort_values("time").reset_index(drop=True)
Exemple #2
0
    def getDyadicGenotypeGroupedEventTable(self, event_list):
        """
        Returns pandas table containing all found events for given event name
        and the involved mice' genotype

            * Primary / secondary mice genotype
            * Event start time
            * Event end time
            * Event duration

        Args:computeEventFeatures
            event_name (str): Event name e. g. Rearing

        Returns:
            DataFrame
        """
        data = defaultdict(list)
        animal_list = self.getAnimalList()
        for a in animal_list:
            if a.genotype is None:
                print("Genotype for all mice needs to be set... (aborting)")

        for event_name in tqdm(event_list, desc="Event..."):

            for A in animal_list:
                for B in animal_list:
                    if A.baseId == B.baseId:
                        continue

                    with mute_prints():
                        eventTimeLine = EventTimeLine(
                            self.conn,
                            event_name,
                            idA=A.baseId,
                            idB=B.baseId,
                            minFrame=self.detectionStartFrame,
                            maxFrame=self.detectionEndFrame,
                        )

                    event_list = eventTimeLine.getEventList()

                    for e in event_list:
                        data["genotype_primary"].append(f"{A.genotype}")
                        data["genotype_secondary"].append(f"{B.genotype}")
                        data["event_name"].append(event_name)
                        data["start_sec"].append(e.startFrame / oneSecond)
                        data["end_sec"].append(e.endFrame / oneSecond)
                        data["duration"].append(e.duration() / oneSecond)

        df = pd.DataFrame(data)
        if len(df) == 0:
            return df
        df.insert(2, "time", pd.to_timedelta(df["start_sec"], unit="s"))

        return df.sort_values("time").reset_index(drop=True)
Exemple #3
0
    def plotNight(self, show=True, saveFile=None):

        fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(12, 4))

        nightTimeLine = EventTimeLine(self.conn, "night", None, None, None,
                                      None)
        for nightEvent in nightTimeLine.eventList:

            ax.axvspan(nightEvent.startFrame,
                       nightEvent.endFrame,
                       alpha=0.1,
                       color='black')
            ax.text((nightEvent.startFrame + nightEvent.endFrame) / 2,
                    0.5,
                    "dark phase",
                    fontsize=8,
                    ha='center')
        ''' set x axis '''
        formatter = ticker.FuncFormatter(self.frameToTimeTicker)
        ax.xaxis.set_major_formatter(formatter)
        ax.tick_params(labelsize=6)
        ax.xaxis.set_major_locator(ticker.MultipleLocator(30 * 60 * 60 * 12))
        ax.xaxis.set_minor_locator(ticker.MultipleLocator(30 * 60 * 60))

        if saveFile != None:
            print("Saving figure : " + saveFile)
            fig.savefig(saveFile, dpi=100)

        if (show):
            plt.show()
        plt.close()
def EventTimeLineCached(connection,
                        file,
                        eventName,
                        idA=None,
                        idB=None,
                        idC=None,
                        idD=None,
                        minFrame=None,
                        maxFrame=None,
                        loadEventIndependently=False):

    global eventCacheDico_

    if eventCacheEnable_ == True:

        #print ("Cache debug:", connection, file, eventName, "ids:" , idA, idB, idC, idD, "frames:", minFrame, maxFrame , loadEventWithoutOverlapCheck )

        if (file, eventName, idA, idB, idC, idD, minFrame, maxFrame,
                loadEventIndependently) in eventCacheDico_:
            eventTimeLine = eventCacheDico_[file, eventName, idA, idB, idC,
                                            idD, minFrame, maxFrame,
                                            loadEventIndependently]
            print(eventName, " Id(", idA, ",", idB, ",", idC,
                  ",", idD, ") Loaded from cache (",
                  len(eventTimeLine.eventList), " records. )")
            return eventTimeLine

    eventTimeLine = EventTimeLine(
        connection,
        eventName,
        idA=idA,
        idB=idB,
        idC=idC,
        idD=idD,
        minFrame=minFrame,
        maxFrame=maxFrame,
        loadEventIndependently=loadEventIndependently)

    if eventCacheEnable_ == True:
        print("Caching eventTimeLine")
        eventCacheDico_[file, eventName, idA, idB, idC, idD, minFrame,
                        maxFrame, loadEventIndependently] = eventTimeLine
    else:
        print("Loading event from base (Cache event disabled)")

    return eventTimeLine
Exemple #5
0
    def plotSensorData(self,
                       sensor="TEMPERATURE",
                       show=True,
                       saveFile=None,
                       minValue=0,
                       autoNight=False):
        """
        plots data for temperature
        """
        print("plotting sensor data. ", sensor)
        cursor = self.conn.cursor()

        # Check the number of row available in base
        query = "SELECT FRAMENUMBER," + sensor + " FROM FRAME"
        try:
            cursor.execute(query)
        except:
            print("plot sensor data: can't access data for ", sensor)
            return

        rows = cursor.fetchall()
        cursor.close()

        frameNumberList = []
        sensorValueList = []
        for row in rows:

            sensorValue = row[1]
            if (sensorValue > minValue):
                if sensorValue != None and minValue != None:
                    frameNumberList.append(row[0])
                    sensorValueList.append(sensorValue)

        fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(24, 8))
        ''' set x axis '''
        formatter = ticker.FuncFormatter(self.frameToTimeTicker)
        ax.xaxis.set_major_formatter(formatter)

        ax.tick_params(labelsize=20)
        ax.xaxis.set_major_locator(ticker.MultipleLocator(30 * 60 * 60 * 12))
        ax.xaxis.set_minor_locator(ticker.MultipleLocator(30 * 60 * 60))

        ax.plot(frameNumberList,
                sensorValueList,
                color="black",
                linestyle='-',
                linewidth=1,
                label=sensor)
        ax.legend(loc=1)

        # plot night
        nightTimeLine = EventTimeLine(self.conn, "night", None, None, None,
                                      None)

        mean = 0
        std = 0

        if len(sensorValueList) > 1:
            mean = np.mean(sensorValueList)
            std = np.std(sensorValueList)

        for nightEvent in nightTimeLine.eventList:

            ax.axvspan(nightEvent.startFrame,
                       nightEvent.endFrame,
                       alpha=0.1,
                       color='black',
                       ymin=0,
                       ymax=1)
            ax.text((nightEvent.startFrame + nightEvent.endFrame) / 2,
                    mean + std,
                    "dark phase",
                    fontsize=20,
                    ha='center')

        autoNightList = []
        if autoNight:
            # compute mean value:
            plt.axhline(y=mean, color='r', linestyle='--')
            ax.text(0,
                    mean,
                    "auto night threshold",
                    fontsize=20,
                    ha='left',
                    va='bottom')

            inNight = False
            start = None
            end = None
            for i in range(len(frameNumberList)):
                frame = frameNumberList[i]
                value = sensorValueList[i]
                if value < mean:  # night
                    if inNight:
                        continue
                    else:
                        inNight = True
                        start = frame
                else:
                    if inNight:
                        end = frame
                        inNight = False
                        if end - start > 300:
                            autoNightList.append((start, end))
                        else:
                            print(
                                "Skipping very short night phase. (less than 10 seconds)"
                            )
                        start = None
                        end = None

            for autoNight in autoNightList:

                ax.axvspan(autoNight[0],
                           autoNight[1],
                           alpha=0.1,
                           color='red',
                           ymin=0.2,
                           ymax=0.8)
                ax.text((autoNight[0] + autoNight[1]) / 2,
                        mean,
                        "auto dark phase",
                        fontsize=20,
                        ha='center',
                        color='red')

        plt.xlabel('time')

        if sensor == "TEMPERATURE":
            plt.ylabel('Temperature (C)')
            plt.ylim(17, 28)

        if sensor == "SOUND":
            plt.ylabel('Sound level (indice)')

        if sensor == "HUMIDITY":
            plt.ylabel('Humidity %')
            plt.ylim(0, 100)

        if sensor == "LIGHTVISIBLE":
            plt.ylabel('Visible light (indice)')

        if sensor == "LIGHTVISIBLEANDIR":
            plt.ylabel('Visible and infrared light (indice)')

        if saveFile != None:
            print("Saving figure : " + saveFile)
            fig.savefig(saveFile, dpi=100)
        '''
        print("TEST 1")
        import os
        os.startfile( saveFile, 'open')
        print( "TEST 2")
        '''

        if (show):
            plt.show()
        plt.close()

        if autoNight:
            return autoNightList
Exemple #6
0
    for file in files:

        # connect to database
        connection = sqlite3.connect(file)

        # create an animalPool, which basically contains your animals
        animalPool = AnimalPool()

        # load infos about the animals
        animalPool.loadAnimals(connection)

        # load all detection (positions) of all animals for the first hour
        animalPool.loadDetection(start=0, end=oneHour)

        eventTimeLine = EventTimeLine(connection,
                                      "Oral-genital Contact",
                                      idA=1,
                                      idB=2,
                                      minFrame=0,
                                      maxFrame=oneHour)

        print("Event list for label ", eventTimeLine.eventNameWithId)
        print("for animal 1:", animalPool.getAnimalDictionnary()[1].RFID)
        print("for animal 2:", animalPool.getAnimalDictionnary()[2].RFID)
        print("Number of events:", len(eventTimeLine.getEventList()))

        print("start frame", "end frame", "duration(in frame)")
        for event in eventTimeLine.eventList:
            print(event.startFrame, event.endFrame, event.duration())
Exemple #7
0
if __name__ == '__main__':
    
    #ask the user for database to process
    files = getFilesToProcess()
    
    for file in files:
        
        # connect to database
        connection = sqlite3.connect( file )
        
        # create an animalPool, which basically contains your animals
        animalPool = AnimalPool()
        
        # load infos about the animals
        animalPool.loadAnimals( connection )
        
        # load all detection (positions) of all animals for the first hour
        animalPool.loadDetection( start = 0, end = oneHour )
        
        eventTimeLineList = []
        for a in animalPool.getAnimalDictionnary():
            for b in animalPool.getAnimalDictionnary():        
                eventTimeLine = EventTimeLine( connection, "Oral-genital Contact", idA = a, idB = b, minFrame = 0, maxFrame = oneHour )
                eventTimeLineList.append( eventTimeLine )        
                    
        plotMultipleTimeLine( eventTimeLineList )
            
        
            
    
    
Exemple #8
0
from lmtanalysis.FileUtil import getFilesToProcess
from lmtanalysis.Animal import AnimalPool
from lmtanalysis.Measure import *
from lmtanalysis.Event import EventTimeLine

if __name__ == '__main__':

    #ask the user for database to process
    files = getFilesToProcess()

    for file in files:

        # connect to database
        connection = sqlite3.connect(file)

        # create an animalPool, which basically contains your animals
        animalPool = AnimalPool()

        # load infos about the animals
        animalPool.loadAnimals(connection)

        # load all detection (positions) of all animals for the first hour
        animalPool.loadDetection(start=0, end=oneHour)

        eventTimeLine = EventTimeLine(connection,
                                      "Oral-genital Contact",
                                      minFrame=0,
                                      maxFrame=oneHour)

        eventTimeLine.plotTimeLine()
Exemple #9
0
            min = start*oneHour
            max = (start+1)*oneHour        
            for animal in animalPool.getAnimalList():
                bt = animal.getBodyThreshold( tmin= min, tmax = max )
                bs = animal.getMedianBodyHeight( tmin= min , tmax = max )
                print (  "min:\t" , str(min), "\tmax:\t", str(max), "\tAnimal:\t" , str(animal.baseId), "\tBT:\t " , str(bt) , "\tBS:\t" , str(bs) )
        
        quit()
        
        '''

        eventTimeLineList = []

        naiveMoveTimeLine = EventTimeLine(connection,
                                          "Stop",
                                          idA=1,
                                          minFrame=minT,
                                          maxFrame=maxT,
                                          inverseEvent=True)
        print("MOVE")
        print("Naive move Total time: ",
              str(naiveMoveTimeLine.getTotalLength()))
        naiveMoveTimeLine.plotTimeLine()

        detectionMoveTimeLine = EventTimeLine(connection,
                                              "Detection",
                                              idA=1,
                                              minFrame=minT,
                                              maxFrame=maxT)
        eventTimeLineList.append(detectionMoveTimeLine)

        eventTimeLineList.append(naiveMoveTimeLine)
Exemple #10
0
    files = getFilesToProcess()

    for file in files:

        # connect to database
        connection = sqlite3.connect(file)

        # create an animalPool, which basically contains your animals
        animalPool = AnimalPool()

        # load infos about the animals
        animalPool.loadAnimals(connection)

        # load all detection (positions) of all animals for the first hour
        animalPool.loadDetection(start=0, end=oneHour)

        eventTimeLine1 = EventTimeLine(connection,
                                       "Oral-genital Contact",
                                       idA=1,
                                       idB=2,
                                       minFrame=0,
                                       maxFrame=oneHour)
        eventTimeLine2 = EventTimeLine(connection,
                                       "Oral-genital Contact",
                                       idA=2,
                                       idB=1,
                                       minFrame=0,
                                       maxFrame=oneHour)

        plotMultipleTimeLine([eventTimeLine1, eventTimeLine2])