Exemple #1
0
def multiFisher():
    filePath = "iris.data.txt"
    bX, bY = loadData.DataLoader(filePath).multiClassifyGetData()
    mX = np.array(bX)
    mY = np.array(bY).reshape(150, 1)  # 用reshape函数修改Y矩阵的形式
    trainX, trainY, testX, testY = generateData.DataGenerator(mX,
                                                              mY).randDivide()
Exemple #2
0
def binaryFisher():
    filePath = "iris.data.txt"
    bX, bY = loadData.DataLoader(filePath).binaryClassifyGetData()
    bX = np.array(bX)
    bY = np.array(bY).reshape(100, 1)  # 用reshape函数修改Y矩阵的形式
    trainX, trainY, testX, testY = generateData.DataGenerator(bX,
                                                              bY).randDivide()
    trainX = trainX.astype(float)
    trainY = trainY.astype(float)
    testX = testX.astype(float)
    testY = testY.astype(float)
    # print(trainX)
    # print(trainY)
    # print(testX)
    # print(testY)
    # print(np.shape(trainX), np.shape(trainY), np.shape(testX), np.shape(testY))
    miu1, length1 = fisher.FisherLinearDiscriminant(trainX, trainY, testX,
                                                    testY).getMiu(1)
    miu2, length2 = fisher.FisherLinearDiscriminant(trainX, trainY, testX,
                                                    testY).getMiu(2)
    # # print(miu1)
    # # print(miu2)
    # S1 = np.zeros((4, 4))
    # S2 = np.zeros((4, 4))
    # for i in range(len(trainX)):
    #     if int(trainY[i]) == 1:
    #         xMat = (trainX[i] - miu1).reshape((4, 1))
    #         s = np.dot(xMat, xMat.T)
    #         # print(s)
    #         S1 = S1 + s
    #     else:
    #         xMat = (trainX[i] - miu2).reshape((4, 1))
    #         s = np.dot(xMat, xMat.T)
    #         # print(s)
    #         S2 = S2 + s
    # # print(S1)
    # # print(S2)
    S1 = fisher.FisherLinearDiscriminant(trainX, trainY, testX,
                                         testY).getSw(miu1, 1)
    S2 = fisher.FisherLinearDiscriminant(trainX, trainY, testX,
                                         testY).getSw(miu2, 2)
    Sw = np.mat(S1 + S2)
    miu = (miu2 - miu1).reshape(4, 1)
    w = np.dot(Sw.I, miu)
    # print(w)
    fisher.FisherLinearDiscriminant(trainX, trainY, testX, testY).plot(w)
    miuAll = (length1 * miu1 + length2 * miu2) / (length1 + length2)
    fisher.FisherLinearDiscriminant(trainX, trainY, testX,
                                    testY).modelTest(w, miuAll)
Exemple #3
0
def getaccuracy(ytest, predictions):
    correct = 0
    for i in range(len(ytest)):
        if ytest[i] == predictions[i]:
            correct += 1

    return (correct/float(len(ytest)))*100.0


def geterror(ytest, predictions):
    return (100.0 - getaccuracy(ytest, predictions))

if __name__ == '__main__':

    dataFile = 'dataset/bank.csv'
    dataloader = ld.DataLoader(dataFile)
    numruns = 1

    # Follw the same testing format as in Assignments
    classalgs = {'Random': al.Classifier(), # Baseline Algorithm
                 'Linear SVM': al.SVMClassifier(), # Linear SVM
                 'Logistic Regression L2 regularizer': al.LogisticRegressionClassifier({'regularizer':'l2', 'regularizerValue':0.01}),
                 'Logistic Regression No regularizer': al.LogisticRegressionClassifier(),
                 'Neural Network': al.NeuralNetwork(),
                }

    numalgs = len(classalgs)

    parameters = (
        {'regwgt':0.0, 'nh':(50, ),  'regularizerValue': 0.01 },
        {'regwgt':0.0, 'nh':(100, ),  'regularizerValue': 0.1 },
Exemple #4
0
import numpy as np


def trans_label(label_matrix):
    temp_list = []
    for label in label_matrix.T:
        if label.getA()[0][1] == 1.0:
            temp_list.append(0)
        else:
            temp_list.append(1)
    return temp_list


if __name__ == "__main__":
    file_path = r'iris.txt'
    x_train, x_test, y_train, y_test = loadData.DataLoader(
        file_path).get_train_test_data()
    y_train_list = trans_label(y_train)
    y_test_list = trans_label(y_test)
    #
    logistic_model = logistic_bayes_model.LogisticBayesClassification(
        x_train,
        np.mat(y_train_list).T, x_test,
        np.mat(y_test_list).T)
    weight = logistic_model.get_weight()
    # logistic_model.load_model()
    logistic_model.save_model()
    for i in range(x_test.shape[1]):
        print(logistic_model.predict(x_test[:, i:i + 1]))
        print(y_test_list[i])
        print('\n')
    print("accuracy:")
Exemple #5
0
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import loadData
import dataGenerate
import AIC_Logistic
import showPlt

if __name__ == '__main__':
    lD = loadData.DataLoader("iris.data.txt")
    dataX, dataY = lD.loadData()
    dG = dataGenerate.DataGenerator(dataX, dataY)
    trainX, trainY, testX, testY = dG.randDivide(testRatio=0.3)
    #  print(trainX, "\n", trainY, "\n", testX, "\n", testY)
    aicL = AIC_Logistic.AicLogistic(trainX, trainY, testX, testY)
    p = aicL.phi()
    weights = aicL.logisticTrain(p, numIter=150)
    sP = showPlt.ShowPlt(trainX, trainY, weights)
    sP.plotMap()
    aicL.logisticTest(weights)
Exemple #6
0
import generateData
import linearRegression


def get_RMSE(data_Y, pre_Y):
    m = len(data_Y)
    loss = 0.0
    for i in range(m):
        loss += pow((data_Y[i] - pre_Y[i]), 2)
    return pow(loss / m, 0.5)


if __name__ == "__main__":
    file_path = 'data.txt'
    # 从文件中加载数据
    X, Y = loadData.DataLoader(file_path).get_data()

    # 划分训练集测试集
    train_data_X, train_data_Y, test_data_X, test_data_Y = generateData.DataGenerator(
        X, Y).rand_divide()

    # 训练模型
    liner_model = linearRegression.LinearRegression(train_data_X, train_data_Y)
    liner_model.train_model()

    # 预测
    pre_Y = []
    f1 = open('pre.txt', 'w')
    for i in test_data_X:
        pre = liner_model.predict_model(i)
        f1.write(str(pre) + '\n')