''' Kmean on position ''' import loadData as ld import clustering as clus import sklearn.cluster as cluster import numpy as np from statistics import mean,median data = ld.getID1Data() data = ld.dataSelectTime(data,10,16,[0,1,2,3,4],1) data = clus.temporalAround24removed(data) data=clus.removeTime(data) kk = cluster.KMeans(n_clusters=10,random_state=0) out = kk.fit(data) clus.plotCluster(data,out.labels_,10) print("Cluster center " + str(out.cluster_centers_)) ld.fromDataClusterToCsv(data,out.labels_,"Work")
Kmean on position """ import loadData as ld import clustering as clus import sklearn.cluster as cluster import numpy as np from statistics import mean, median data = ld.getID2Data() ######If you want to select particular moments in the day timeShift = -8 # San Francisco data = ld.dataSelectTime(data, 0, 24, [0, 1, 2, 5, 6], timeShift) ####### Modulo 24 hours # data = clus.temporalAround24removed(data) data = clus.temporalAround7Daysremoved(data) #######Remove time # data=clus.removeTime(data) kk = cluster.KMeans(n_clusters=5, random_state=0) out = kk.fit(data) clus.plotCluster(data, out.labels_, 5) print("Cluster center " + str(out.cluster_centers_)) ld.fromDataClusterToCsv(data, out.labels_, "WorkingDays") ###### Select a center and get the 80% closest values to this center removed to far points
Kmean on position """ import loadData as ld import clustering as clus import sklearn.cluster as cluster import numpy as np from statistics import mean, median data = ld.getID3Data() ######If you want to select particular moments in the day timeShift = -8 # San Francisco data = ld.dataSelectTime(data, 0, 24, range(0, 6), timeShift) ####### Modulo 24 hours # data = clus.temporalAround24removed(data) data = clus.temporalAround7Daysremoved(data) #######Remove time # data=clus.removeTime(data) kk = cluster.KMeans(n_clusters=7, random_state=0) out = kk.fit(data) clus.plotCluster(data, out.labels_, 7) print("Cluster center " + str(out.cluster_centers_)) ld.fromDataClusterToCsv(data, out.labels_, "WorkingDays") ###### Select a center and get the 80% closest values to this center removed to far points