Exemple #1
0
import pickle
from sklearn.feature_extraction import DictVectorizer
from itertools import chain
import nltk
from sklearn.metrics import classification_report, confusion_matrix
from sklearn.preprocessing import LabelBinarizer
import sklearn
import pycrfsuite
from loadTuples import load, load2, load3
from sklearn import svm
from evalt import *
from collections import Counter
import sentlex

test_sents = load3("test")
#print train_sents
#print "sent =" +str(len(train_sents))
SWN = sentlex.SWN3Lexicon()

f = open("PredictedTags.pkl", 'rb')
Eventpredicted = pickle.load(f)
f.close()

global wordCnt

wordCnt = -1


def word2features(sent, i):
    """get the feautes corresponding to a word in a sentence at a particular position
    Args:
Exemple #2
0
from sklearn.feature_extraction import DictVectorizer
from itertools import chain
import nltk
from sklearn.metrics import classification_report, confusion_matrix
from sklearn.preprocessing import LabelBinarizer
import sklearn
import pycrfsuite
from loadTuples import load, load2, load3
from sklearn import svm
from evalt3 import *
import pickle
import sentlex
train_sents = load3("train")
# test_sents = load2("test")[:100]
#print train_sents
#print "sent =" +str(len(train_sents))
SWN = sentlex.SWN3Lexicon()


def word2features(sent, i):
    """get the feautes corresponding to a word in a sentence at a particular position
    Args:
        sent: the sentence whose word is to be considered
        i: the position of the word in the sentence
    Returns:
        the dictionary containing the features for the classifier
    """
    word = sent[i][0]
    postag = sent[i][1]
    norm = sent[i][2]
    cui = sent[i][3]
import pickle
from sklearn.feature_extraction import DictVectorizer
from itertools import chain
import nltk
from sklearn.metrics import classification_report, confusion_matrix
from sklearn.preprocessing import LabelBinarizer
import sklearn
import pycrfsuite
from loadTuples import load,load2, load3
from sklearn import svm
from evalt import *
import sentlex
from collections import Counter

test_sents = load3("test")
#print train_sents
#print "sent =" +str(len(train_sents))
SWN = sentlex.SWN3Lexicon()

f=open("PredictedTags.pkl", 'rb')
Eventpredicted  = pickle.load(f)
f.close()


global wordCnt 

wordCnt = -1
def word2features(sent, i):
	"""get the feautes corresponding to a word in a sentence at a particular position
    Args:
        sent: the sentence whose word is to be considered
from sklearn.feature_extraction import DictVectorizer
from itertools import chain
import nltk
from sklearn.metrics import classification_report, confusion_matrix
from sklearn.preprocessing import LabelBinarizer
import sklearn
import pycrfsuite
from loadTuples import load,load2,load3
from sklearn import svm
from evalt3 import *
import pickle
import sentlex
train_sents = load3("train")
# test_sents = load2("test")[:100]
#print train_sents
#print "sent =" +str(len(train_sents))
SWN = sentlex.SWN3Lexicon()

def word2features(sent, i):
	"""get the feautes corresponding to a word in a sentence at a particular position
    Args:
        sent: the sentence whose word is to be considered
        i: the position of the word in the sentence
    Returns:
        the dictionary containing the features for the classifier
    """
	word = sent[i][0]
	postag = sent[i][1]
	norm = sent[i][2]
	cui = sent[i][3]
	tui = sent[i][4]