Exemple #1
0
    def main(self):


        shutil.rmtree("./log/", ignore_errors=True)

        obj_for_afm_dafm = afm_data_generator(self.args)
        data_for_afm_dafm = obj_for_afm_dafm.main()
        predictions = []

        if (not self.args.afm[0] == None):
            for index, data in enumerate(data_for_afm_dafm):
                ###print ("testing", index)
                if index == 0:
                    predictions.append(self.fit_predict_afm(data[0], data[1], data[2], data[3], data[4]))
                else:
                    if self.args.dafm[1] == "Yes":
                        predictions.append(self.fit_predict_batch_dafm(data[0], data[1]))
                    else:
                        predictions.append(self.fit_predict_dafm(data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7], data[8]))

        elif (not self.args.dafm[0] == None):
            for data in data_for_afm_dafm:
                if self.args.dafm[1] == "Yes":
                    predictions.append(self.fit_predict_batch_dafm(data[0], data[1]))
                else:
                    predictions.append(self.fit_predict_dafm(data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7], data[8]))

        else:
            for data in data_for_afm_dafm:
                predictions.append(self.fit_predict_dkt(data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]))
        print (predictions)
        outfile = open(workingDir + "output.txt", 'a')
        outfile.write (str(predictions) + "\n")
        outfile.close()
Exemple #2
0
    def main(self):

        shutil.rmtree(self.args.source_path + self.args.dataset[0] + "log/",
                      ignore_errors=True)

        obj_for_afm_dafm = afm_data_generator(self.args)
        data_for_afm_dafm = obj_for_afm_dafm.main()
        predictions = []

        if (not self.args.afm[0] == None):
            for index, data in enumerate(data_for_afm_dafm):
                print("testing", index)
                if index == 0:
                    predictions.append(
                        self.fit_predict_afm(data[0], data[1], data[2],
                                             data[3], data[4]))
                else:
                    if self.args.dafm[1] == "Yes":
                        predictions.append(
                            self.fit_predict_batch_dafm(data[0], data[1]))
                    else:
                        predictions.append(
                            self.fit_predict_dafm(data[0], data[1], data[2],
                                                  data[3], data[4], data[5],
                                                  data[6], data[7], data[8]))

        elif (not self.args.dafm[0] == None):
            for data in data_for_afm_dafm:
                if self.args.dafm[1] == "Yes":
                    predictions.append(
                        self.fit_predict_batch_dafm(data[0], data[1]))
                else:
                    predictions.append(
                        self.fit_predict_dafm(data[0], data[1], data[2],
                                              data[3], data[4], data[5],
                                              data[6], data[7], data[8]))

        else:
            for data in data_for_afm_dafm:
                predictions.append(
                    self.fit_predict_dkt(data[0], data[1], data[2], data[3],
                                         data[4], data[5], data[6], data[7]))

        print(predictions)