# %% imported need packages import numpy as np import tensorflow as tf import os import optuna import matplotlib.pyplot as plt from load_data import get_all_time_series from load_data import to_float from load_data import to_float_vec mypath = r'../COVID-19/' subpath = r'csse_covid_19_data/csse_covid_19_time_series' the_path = os.path.join(mypath, subpath) [df_infected, df_confirmed, df_recovered, df_deaths] = get_all_time_series(the_path) from information import df_information countries = ['Italy'] for country_code in countries: infected = df_infected[country_code].values deaths = df_deaths[country_code].values recovered = df_recovered[country_code].values population = df_information[df_information.country == country_code].population.values[0] Regr = int( df_information[df_information.country == country_code].Regr.values[0]) # %% find start_time start_time = 0 for i in infected: if i != 0:
# %% load needed packages import tensorflow as tf import matplotlib.pyplot as plt import numpy as np import os from load_data import get_all_time_series from load_data import to_float from load_data import to_float_vec # %% load the data from user input mypath = r'../COVID-19/' subpath = r'csse_covid_19_data/csse_covid_19_time_series' the_path = os.path.join(mypath,subpath) [df_infected,df_confirmed,df_recovered,df_deaths] = get_all_time_series(the_path) #%% create df of needed information for each country from information import df_information print(df_information) # %% user input the country to train countries = ['Italy'] country_code = countries[0] infected = df_infected[country_code].values deaths = df_deaths[country_code].values recovered = df_recovered[country_code].values population = df_information[df_information.country==country_code].population.values[0] Regr = int(df_information[df_information.country==country_code].Regr.values[0]) #%% find start_time start_time = 0 for i in infected: if i!=0: break start_time = start_time+1