if save_output: for f in os.listdir(exp_dir): if 'exp_stdout.txt' in f: os.remove(exp_dir + f) write_to_file = exp_dir + 'exp_stdout.txt' ########################################################################################### ########################################################################################### # LOAD DATA if args.dataset == 'clevr': # # CLEVR DATA dataset = load_clevr(batch_size=args.batch_size, vws=args.vws, quick=args.quick) elif args.dataset == 'cifar': # CIFAR DATA # train_image_dataset = load_cifar(data_dir=args.data_dir) dataset = load_cifar(data_dir=home + '/Documents/') print(len(dataset), dataset[0].shape) ########################################################################################### ########################################################################################### # Init Model # ------------------------------------------------------------------------------ sampling_batch_size = 64 shape = dataset[0].shape
write_to_file = exp_dir + 'exp_stdout.txt' ########################################################################################### ########################################################################################### # LOAD DATA print('\nLoading Data') if args.dataset == 'clevr': # # CLEVR DATA if args.machine in ['vws', 'vector', 'vaughn']: data_dir = home + "/vl_data/two_objects_large/" #vws else: data_dir = home + "/VL/data/two_objects_no_occ/" #boltz train_x, test_x = load_clevr(batch_size=args.batch_size, data_dir=data_dir, quick=args.quick) shape = train_x[0].shape elif args.dataset == 'cifar': # CIFAR DATA # train_image_dataset = load_cifar(data_dir=args.data_dir) train_x, test_x = load_cifar(data_dir=home + '/Documents/', dataset_size=args.dataset_size) shape = train_x[0].shape # print (len(test_x), 'test set len') svhn_test_x = load_svhn(data_dir=home + '/Documents/') # svhn_test_x = test_x # dataset = train_x