def main(settings_file: str): """ The function calls the function of downloading and checking all files then the data analysis function Parameters ---------- settings_file : str The name of the settings file which is obtained from the command line Returns ------- None. """ class_error.student_info() class_error.condition_info() class_error.working_out() try: print('ini ' + settings_file + ' : ', end="") ini = load_data.load_ini(settings_file) except OSError: raise class_error.SettingsFileError() except ValueError: raise class_error.SettingsFileError() data = class_information.Information() load_data.load_file(data, ini[0]['csv'], ini[0]['json'], ini[0]['encoding']) data.data_analysis(ini[1]['fname'], ini[1]['encoding'])
def update_plot_raw_signal(): new_file_name = file_menu.value data = load_data.load_file(new_file_name, _WINDOW_SCALING) data_raw_signal.data = dict(x=np.arange(0, _SPARSNESS * len(data), step=_SPARSNESS), y=data)
def main(method_flag): # load data source_df, target_df = ld.load_file() predicts, corrects = [], [] random.seed(123) np.random.seed(123) kf = KFold(shuffle=False,random_state=1,n_splits=mc._FOLD_NUM) fold_num = 1 cnt = 0 for train, test in kf.split(target_df): print('{0}/{1}'.format(fold_num, mc._FOLD_NUM)) target_train = target_df.iloc[train] target_test = target_df.iloc[test] idx, labels = transfer_model(source_df, target_train, target_test, method_flag, fold_num) predicts.extend(idx.tolist()) corrects.extend(labels[0].tolist()) fold_num = fold_num+1 # save results predicts = np.array(predicts) corrects = np.array(corrects) err = [] for i in range(len(predicts)): if predicts[i] == corrects[i]: err.append(0) else: err.append(1) test = np.concatenate((np.reshape(predicts,[len(predicts),1]),np.reshape(corrects,[len(corrects),1]),\ np.reshape(err,[len(err),1])), axis=1) save_data = pd.DataFrame(test) save_data.to_csv('%s'%(mc._RESULT_FILE),index=False,header=False) #save_data.to_csv('../results/results.csv',index=False,header=False) fp = open('%s'%(mc._RESULT_FILE),'a') #fp = open('../results/results.csv','a') fp.write('%f\n'%((1.0-np.mean(err))*100.0)) fp.close()
def load_file(self, filename): ''' load file to network, currently supporting only tsv ''' import load_data load_data.load_file(self, filename)
import load_data as ld h, w, names, coordinates, distances = ld.get_data_to_dict(ld.load_file("./metro.gr")) ld.draw_subway(h, w, coordinates, distances) p, d = ld.dijkstra(distances, 0, 350) print(p) print(list(map(lambda x: names[x], p))) ld.draw_subway(h, w, coordinates, distances, path=p, file_name="trajet.svg")
def load_file(self, filename): import load_data load_data.load_file(self, filename)
spectrum_source.data = dict(f=f, y=spectrum) spectrum_plot.x_range.end = freq.value * 0.001 alphas = [] for x in bins: a = np.zeros_like(eq_range) n = int(ceil(x)) a[:n] = (1 - eq_range[:n] * 0.05) alphas.append(a) eq_source.data['alpha'] = np.hstack(alphas) _SPARSNESS = 3 _WINDOW_SCALING = 2 _BASE_FILE_NAME = load_data.get_file_names()[0] _BASE_FILE = load_data.load_file(_BASE_FILE_NAME, _WINDOW_SCALING) _BASE_FILE_RAW = load_data.load_raw_file(_BASE_FILE_NAME) MAX_FREQ_KHZ = MAX_FREQ * 0.001 NUM_GRAMS = 800 GRAM_LENGTH = 512 TILE_WIDTH = 200 EQ_CLAMP = 20 PALETTE = [ '#081d58', '#253494', '#225ea8', '#1d91c0', '#41b6c4', '#7fcdbb', '#c7e9b4', '#edf8b1', '#ffffd9' ] PLOTARGS = dict(tools="", toolbar_location=None, outline_line_color='#595959') data_raw_signal = ColumnDataSource( data=dict(x=np.arange(0, _SPARSNESS * len(_BASE_FILE), step=_SPARSNESS), y=_BASE_FILE))
from flask import Flask from flask import request, jsonify import load_data app = Flask(__name__) l = load_data.load_file() #获取数据,储存到l中 def find(l, d): '从数据集中寻找,返回房间号,找不到则返回-1' for i in l: if i['id'] == d['id'] and i['data'] == d['data']: return i['num'] return -1 @app.route('/found', methods=['POST']) def index(): print('接收到数据:', request.json) rec_l = request.json return_list = [int(find(l, i)) for i in rec_l] return jsonify(return_list) app.run()
import load_data import gale_shapley team_file = "teams.tsv" app_file = "applicants.tsv" out_file = "out.csv" if __name__ == "__main__": print("Starting...") teams = load_data.load_file(team_file, load_data.team) print("Loaded teams...") apps = load_data.load_file(app_file, load_data.app) print("Loaded applicants...") teams, rejects, itterations = gale_shapley.run(teams, apps) print("Process done in " + str(itterations) + " iterations...") with open(out_file, 'w') as f: sep_char = "," for team in teams: f.write("'==" + sep_char + team.serialize(sep_char) + '\n') for member in team.members: f.write(team.name + sep_char + member.serialize(sep_char) + '\n') f.write("'==" + sep_char + "Teamless\n") for reject in rejects: f.write(reject.Data_read_from) print("File written")