Exemple #1
0
                test += 1
                aux_clusters[curr_indx].remove(k)
                aux_clusters[pred_idx].append(k)
                self.obj_to_cluster[k] = pred_idx
        self.clusters = aux_clusters
        return test

    def objective_function(self):
        print("calculating J_kcm_f_gh...")
        result = 0.
        self.part2 = self.__all_against_all_cluster_sum()
        for i in range(self.c):
            for k in self.clusters[i]:
                result += 1 - self.__object_against_cluster_sum(k, i) + self.part2[i]
        return result

    def rand_score(self):
        return adjusted_rand_score(labels_true=self.y,
                labels_pred=self.obj_to_cluster.values())

if __name__ == "__main__":
    import pandas as pd
    from load_data import Dataset


    datadir='../../data/segmentation_2.test'
    df = pd.read_csv(datadir, sep=',')
    mydata = Dataset()
    mydata.load(df, 'rgb')
    kcm = KCM_F_GH(c=7, p=mydata.X.values.shape[1], data=mydata)
Exemple #2
0
if __name__ == '__main__':

    datadir = '../../data/segmentation_2.test'
    result_dir = '../../results/clustering'
    result_file = 'results'
    bresult_file = 'best_result'
    view = 'rgb'
    norm = True

    result_file = '{}{}_{}'.format(view, '_norm' if norm else '', result_file)
    bresult_file = '{}{}_{}'.format(view, '_norm' if norm else '',
                                    bresult_file)

    df = pd.read_csv(datadir, sep=',')
    mydata = Dataset()
    mydata.load(df, view)

    # Variáveis para armazenar resultado da execução do algoritmo
    res_obj_function = []
    res_cluster = []
    res_obj_to_cluster = []
    res_hp = []
    res_ari = []  # adjusted rand indexes list
    res_J = []  # uma lista com a melhor serie de convergência de J
    # executar o algoritmo 100x
    for epoch in range(5):
        start_total_time = time.time()
        # inicialização do algoritmo
        kcm = KCM_F_GH(c=7, p=mydata.X.shape[1], data=mydata, norm=norm)
        kcm.initialization()
        # parte iterativa do algoritmo