Exemple #1
0
    #f.close()
    W = param_dict['W'].param
    pylab.ioff()
    net.set_input('input',Xtest)
    net.set_target('squared loss',Ytest)  
    net.forward_prop(test=True)
    pylab.plot(Xtest,net.target_layers['squared loss'].outputs)
    pylab.plot(X,Y)
    pylab.show()
    return param_dict

if __name__ == '__main__':
    #D = loadmat('mnist_small.mat')
    #D = loadmat('patches_16x16.mat')
    #X = D['patches']
    D = ld.load_mnist(range(10))
    X = D[0]
    Y = D[1]
    Xtest = D[2]
    Ytest = D[3]

    num_examples = X.shape[0]
    num_hid = 500
    num_iters = 100
    eta = 0.1
    mo = 0.9
    np.random.seed(1)

    ind = np.random.permutation(X.shape[0])[0:num_examples]
    X = X[ind]
    Y = Y[ind]
Exemple #2
0
            dW = mo * dW - eta * gW
            dbh = mo * dbh - eta * gbh
            dO = mo * dO - eta * gO
            dbo = mo * dbo - eta * gbo

            W = W + dW
            bh = bh + dbh
            O = O + dO
            bo = bo + dbo

        print 'Iteration %d Complete. Objective value: %s' % (i + 1,
                                                              iteration_obj)

    return W, bh, O, bo


if __name__ == '__main__':
    np.random.seed(1)
    X, y, Xtest, ytest = ld.load_mnist(range(10))[:4]
    kmin = 10
    kmax = 10

    W, bh, O, bo = train_carbm_nnet(X, y, mo=0.5, kmin=kmin, kmax=kmax)
    yhat = carbm_nnet_classify(W, bh, O, bo, Xtest, 10, 10)

    err = (yhat != ytest.argmax(1)).mean()
    print 'Classification error: %s' % err

    pylab.ioff()
    d.print_aligned(W)
    pylab.show(block=True)
Exemple #3
0
                    print 'File deleted: %s' % ~os.path.isfile(save_file)
                return W, b, c
        print 'Iteration %d complete. Objective value: %s' % (i + 1, obj)
        times.append(time.time())
        errs.append(obj)

        #Save out some results about timing/reconstruction error per epoch.
        if save_file is not None:
            np.savez(save_file, W=W, b=b, c=c, times=times, errs=errs)

        #Plot some diagnostics for this epoch.
        if plotting:
            pylab.ion()
            pylab.subplot(1, 2, 1)
            d.print_aligned(W[:, 0:np.minimum(100, W.shape[1])])
            pylab.subplot(1, 2, 2)
            d.print_aligned((v_neg + m).T)
            pylab.draw()

    return W, b, c


if __name__ == '__main__':
    np.random.seed(1)
    import load_datasets as ld
    X = ld.load_mnist(range(10))[0]
    W, b, c = carbm_cd(X, plotting=True, num_iters=10)
    pylab.ioff()
    d.print_aligned(W)
    pylab.show(block=True)
Exemple #4
0
            gO  = G['gO']
            gbo = G['gbo']

            dW  = mo*dW - eta*gW
            dbh = mo*dbh - eta*gbh
            dO  = mo*dO - eta*gO
            dbo = mo*dbo - eta*gbo

            W = W + dW
            bh = bh + dbh
            O = O + dO
            bo = bo + dbo

        print 'Iteration %d Complete. Objective value: %s' % (i+1,iteration_obj)

    return W,bh,O,bo
if __name__ == '__main__':
    np.random.seed(1)
    X,y,Xtest,ytest = ld.load_mnist(range(10))[:4]
    kmin = 10
    kmax = 10

    W,bh,O,bo = train_carbm_nnet(X,y,mo=0.5,kmin=kmin,kmax=kmax)
    yhat = carbm_nnet_classify(W,bh,O,bo,Xtest,10,10)
    
    err = (yhat != ytest.argmax(1)).mean()
    print 'Classification error: %s' % err

    pylab.ioff()
    d.print_aligned(W)
    pylab.show(block=True)