Exemple #1
0
    args = parser.parse_args()

    if not os.path.exists(args.output):
        os.makedirs(args.output)

    print('-------------')
    print('BATCH        : {}'.format(args.batch))
    print('EPOCH        : {}'.format(args.epoch))
    print('ALPA         : {}'.format(args.alpha))
    print('DROPOUT      : {}'.format(args.dropout))
    print('Load Weights?: {}'.format(args.weights))
    print('Dataset      : {}'.format(args.dataset))
    print('OUTPUT       : {}'.format(args.output))
    print('-------------')

    df_train, df_val = getDataFromFolder(args.dataset, args.output)
    print('TRAIN:', len(df_train))
    print('VALIDATION:', len(df_val))

    model = NvidiaModel(args.alpha, args.dropout)

    print(model.summary())

    # Saves the model...
    with open(os.path.join(args.output, 'model.json'), 'w') as f:
        f.write(model.to_json())

    try:
        if args.weights:
            print('Loading weights from file ...')
            model.load_weights(args.weights)
Exemple #2
0
    print('BATCH: {}'.format(args.batch))
    print('EPOCH: {}'.format(args.epoch))
    print('ALPA: {}'.format(args.alpha))
    print('DROPOUT: {}'.format(args.dropout))
    print('Load Weights?: {}'.format(args.loadWeights))
    print('Dataset: {}'.format(args.dataset))
    print('Model: {}'.format(args.output))
    print('-------------')

    if not os.path.exists(args.output):
        os.makedirs(args.output)

    # ROOT = '/Users/nando/Downloads/thunderhill_data/dataset_sim_000_km_few_laps'
    # split data into training and testing
    # df_train, df_val = __train_test_split('{}/driving_log.csv'.format(ROOT), False)
    df_train, df_val = getDataFromFolder(args.dataset)
    print('TRAIN:', len(df_train))
    print('VALIDATION:', len(df_val))

    model = NvidiaModel(args.alpha, args.dropout)

    # Saves the model...
    with open(os.path.join(args.output, 'model.json'), 'w') as f:
        f.write(model.to_json())

    try:
        if args.weights:
            print('Loading weights from file ...')
            model.load_weights(args.weights)
    except IOError:
        print("No model found")
Exemple #3
0
    if not os.path.exists(args.output):
        os.makedirs(args.output)

    print('-------------')
    print('BATCH        : {}'.format(args.batch))
    print('EPOCH        : {}'.format(args.epoch))
    print('ALPA         : {}'.format(args.alpha))
    print('DROPOUT      : {}'.format(args.dropout))
    print('Load Weights?: {}'.format(args.weights))
    print('Dataset      : {}'.format(args.dataset))
    print('OUTPUT       : {}'.format(args.output))
    print('-------------')

    df = getDataFromFolder(args.dataset,
                           args.output,
                           randomize=False,
                           balance=True,
                           split=False)
    extractCNNFeatures(df, args.weights)

    train_size = int(0.7 * len(df))
    df_train = df.iloc[:train_size]
    df_val = df.iloc[train_size:]
    print('TRAIN:', len(df_train))
    print('VALIDATION:', len(df_val))

    model = Lstm(args.batch, args.seq, CNN_INPUT_SIZE, args.dropout)

    print(model.summary())

    # Saves the model...
Exemple #4
0
        os.makedirs(args.output)

    print('-------------')
    print('BATCH        : {}'.format(args.batch))
    print('EPOCH        : {}'.format(args.epoch))
    print('ALPA         : {}'.format(args.alpha))
    print('DROPOUT      : {}'.format(args.dropout))
    print('Load Weights?: {}'.format(args.weights))
    print('Dataset      : {}'.format(args.dataset))
    print('OUTPUT       : {}'.format(args.output))
    print('-------------')

    # TODO: abstract method to normalize speed.
    df = getDataFromFolder(args.dataset,
                           args.output,
                           randomize=False,
                           split=True,
                           normalize=True)[0]
    df_train, df_val = getDataFromFolder(args.dataset, args.output)
    print('TRAIN:', len(df_train))
    print('VALIDATION:', len(df_val))
    model = NvidiaModel(args.dropout)

    print(model.summary())

    # Saves the model...
    with open(os.path.join(args.output, 'model.json'), 'w') as f:
        f.write(model.to_json())

    try:
        if args.weights: