def _build_loaders(self):
     train_path = self.get("data/paths/train", ensure_exists=True)
     validate_path = self.get("data/paths/validate", ensure_exists=True)
     self.train_loader = get_dataloader(path=train_path,
                                        **self.get("data/loader_kwargs",
                                                   ensure_exists=True))
     self.validate_loader = get_dataloader(path=validate_path,
                                           **self.get("data/loader_kwargs",
                                                      ensure_exists=True))
Exemple #2
0
    def test_loader(self):
        from loader import get_dataloader

        path = self.DATASET_PATH
        batch_size = 5
        dataloader = get_dataloader(
            batch_size=batch_size, shuffle=False, num_workers=0, path=path
        )
        batch = next(iter(dataloader))
        self.assertEqual(len(batch), self.NUM_KEYS_IN_BATCH)
        # Testing that all the keys in the batch have the batch_size
        keys_in_batch = list(batch.keys())
        for key in keys_in_batch:
            self.assertEqual(len(batch[key]), batch_size)
        dataloader = get_dataloader(
            batch_size=batch_size, shuffle=False, num_workers=0, path=[path, path]
        )
        batch = next(iter(dataloader))
Exemple #3
0
import onnx
from onnx_tf.backend import prepare
from models import ContactTracingTransformer
from loader import get_dataloader
import torch
path = "output.pkl"
dataloader = get_dataloader(batch_size=1,
                            shuffle=False,
                            num_workers=0,
                            path=path)
batch = next(iter(dataloader))

#Load ONNX model
onnx_model = onnx.load("model_onnx_10.onnx")
tf_model = prepare(onnx_model)
#Inputs to the model
print('inputs:', tf_model.inputs)
# Output nodes from the model
print('outputs:', tf_model.outputs)

# All nodes in the model
# print('tensor_dict:')
# print(tf_model.tensor_dict)
output = tf_model.run(batch)
print(output)
tf_model.export_graph('tf_graph2.pb')

#Sanity check with the PyTorch Model
ctt = ContactTracingTransformer(pool_latent_entities=False,
                                use_logit_sink=False)
ctt.load_state_dict(torch.load('model.pth'))