Exemple #1
0
def set_model(sem_input_file, sem_name, sem_input_macro = True, semantics_name='TCG_semantics_main', 
              grammar_name='TCG_grammar_VB_main', model_params = {}):
    """
    Sets up a TCG production model.
    
    Args:
        - sem_input_file (STR): Semantic input file name
        - sem_name (STR): Semantic input name
        - sem_input_macro (BOOL): True is the input is an ISRF macro
        - semantics_name (STR): Name of the semantic file containing the perceptual, world, and conceptualization knowledge.
        - grammar_name (STR): Name of the grammar file to use.
        - model_prams (dict): Dictionary defining the model parameters (if different than default)
    
    Returns: (model, semantic input genereator)    
    
    """
    SEM_INPUT_PATH = './data/sem_inputs/'
    
    model = TCG_production_system(grammar_name=grammar_name, semantics_name=semantics_name)
    if model_params:
        model.update_params(model_params)
    
    # Set up semantic input generator    
    conceptLTM = model.schemas['Concept_LTM']
    if not(sem_input_macro):
        sem_inputs = TCG_LOADER.load_sem_input(sem_input_file, SEM_INPUT_PATH)
        sem_input = {sem_name:sem_inputs[sem_name]}
        sem_gen = ls.SEM_GENERATOR(sem_input, conceptLTM, speed_param=1)
    if sem_input_macro:
        sem_inputs = TCG_LOADER.load_sem_macro(sem_name, sem_input_file, SEM_INPUT_PATH)
        sem_gen = ls.SEM_GENERATOR(sem_inputs, conceptLTM, speed_param=1)
    
    return (model, sem_gen)
def set_inputs(model, input_name, sem_input_file='diagnostic.json', sem_input_macro=False, speed_param=10):
    """
    Sets up a TCG ISRF inputs generator for TCG production model.
    
    Args:
        - model (): model to which the inputs will be sent
        - input_name (STR): name of the input to be used.
        - sem_input_file (STR): Semantic input file name. For non-macro input, set to 'ALL' to load all inputs from file.
        - sem_input_macro (BOOL): True is the input is an ISRF macro.
        - speed_param (INT): multiplier of the rate defined in the ISRF input (by default the ISFR rate is 1.)
    
    Returns:
        - input SEM_GENERATOR object.
    """
    SEM_INPUT_PATH = './data/sem_inputs/'
    
    
    conceptLTM = model.schemas['Concept_LTM']
    if not(sem_input_macro):
        sem_inputs = TCG_LOADER.load_sem_input(sem_input_file, SEM_INPUT_PATH)
        if input_name == 'ALL':
            sem_gen = ls.SEM_GENERATOR(sem_inputs, conceptLTM, speed_param=speed_param, is_macro=sem_input_macro)
            sem_gen.ground_truths = TCG_LOADER.load_ground_truths(sem_input_file, SEM_INPUT_PATH)
        else:
            sem_input = {input_name:sem_inputs[input_name]}
            sem_gen = ls.SEM_GENERATOR(sem_input, conceptLTM, speed_param=speed_param,is_macro=sem_input_macro)
            ground_truths = TCG_LOADER.load_ground_truths(sem_input_file, SEM_INPUT_PATH)
            sem_gen.ground_truths = ground_truths.get(input_name, None)
    if sem_input_macro:
        sem_inputs = TCG_LOADER.load_sem_macro(input_name, sem_input_file, SEM_INPUT_PATH)
        sem_gen = ls.SEM_GENERATOR(sem_inputs, conceptLTM, speed_param=speed_param, is_macro=sem_input_macro)
        ground_truths = TCG_LOADER.load_ground_truths(sem_input_file, SEM_INPUT_PATH)
        sem_gen.ground_truths = ground_truths.get(input_name, None)
    
    return sem_gen
Exemple #3
0
def set_inputs(model,
               input_name,
               input_file='TCG_scene.json',
               show_scene=True):
    """
    Sets up a SCENE input for SALVIA_P model
    
    Args:
        - sem_name (STR): Semantic input name.
        - sem_input_file (STR): Semantic input file name. For non-macro input, set to 'ALL' to load all inputs from file.
        - sem_input_macro (BOOL): True is the input is an ISRF macro.
        - speed_param (INT): multiplier of the rate defined in the ISRF input (by default the ISFR rate is 1.)
    
    Returns input SEM_GENERATOR object.
    """

    # Defining scene input
    SCENE_INPUT_PATH = "./data/scenes/"
    SCENE_FOLDER = "%s%s/" % (SCENE_INPUT_PATH, input_name)
    IMG_FILE = SCENE_FOLDER + 'scene.png'

    perceptLTM = model.schemas['Percept_LTM']
    my_scene = TCG_LOADER.load_scene(input_file, SCENE_FOLDER, perceptLTM)
    model.set_input(my_scene)

    return (input_name, IMG_FILE)
Exemple #4
0
def test_run(seed=None):
    """
    Test run function for the production model.
    """
    if not(seed): # Quick trick so that I can have access to the seed used to run the simulation.
        random.seed(seed)
        seed = random.randint(0,10**9)
        print "seed = %i" %seed
        
    random.seed(seed)
    SEM_INPUT = 'sem_inputs.json' # semantic input files (no macros)
    INPUT_NAME = 'blue_woman_kick_man' # Name of the input to use.
    
    FOLDER = './tmp/TEST_%s_%s/' %(INPUT_NAME, str(seed)) # Folder where the simulation results will be saved.
    
    language_system_P = TCG_production_system(grammar_name='TCG_grammar_VB_main', semantics_name='TCG_semantics_main') # Create model
    
    # Set up semantic input generator    
    conceptLTM = language_system_P.schemas['Concept_LTM']
    sem_inputs = TCG_LOADER.load_sem_input(SEM_INPUT, "./data/sem_inputs/")   
    speed_param = 1
    sem_gen = ls.SEM_GENERATOR(sem_inputs, conceptLTM, speed_param)
 
    generator = sem_gen.sem_generator(INPUT_NAME)
    
    (sem_insts, next_time, prop) = generator.next() #Getting the initial input.
    
    # Test paramters
    language_system_P.params['Control']['task']['start_produce'] = 3100
    language_system_P.params['Control']['task']['time_pressure'] = 200
    language_system_P.params['Grammatical_WM_P']['C2']['confidence_threshold'] = 0.3
    
    set_up_time = -10 # Starts negative to let the system settle before it receives its first input. Also, easier to handle input arriving at t=0.
    max_time = 3000
    save_states = [30, 700, 2000]
    
    flag = False
    for t in range(set_up_time, max_time):
        if next_time != None and t>next_time:
            (sem_insts, next_time, prop) = generator.next()
            print "t:%i, sem: %s (prop: %s)" %(t, ', '.join([inst.name for inst in sem_insts]), prop)
            language_system_P.set_input(sem_insts)
        language_system_P.update()
        output = language_system_P.get_output()
        if not(language_system_P.schemas['Grammatical_WM_P'].comp_links) and t>10 and not(flag):
            print "t:%i, Competition done" % t
            flag = True
            TCG_VIEWER.display_lingWM_state(language_system_P.schemas['Semantic_WM'], language_system_P.schemas['Grammatical_WM_P'], concise=True, folder = FOLDER)
            language_system_P.params['Control']['task']['start_produce'] = t + 10
        if output['Utter']:
            print "t:%i, '%s'" %(t, output['Utter'])
        if t - set_up_time in save_states:
            TCG_VIEWER.display_lingWM_state(language_system_P.schemas['Semantic_WM'], language_system_P.schemas['Grammatical_WM_P'], concise=True, folder = FOLDER)
    
    language_system_P.schemas['Semantic_WM'].show_SemRep()
    language_system_P.schemas['Grammatical_WM_P'].show_dynamics(inst_act=True, WM_act=False, c2_levels=True,  c2_network=False)
    language_system_P.save_sim(FOLDER, 'test_language_output.json')
    
    return language_system_P
def set_inputs(model, input_name, input_file='kuchinsky.json'):
    """
    Sets up a SCENE_LIGHT input for SALVIA_P_light model
    
    Args:
        - input_name (STR): scene input name.
        - input_input_file (STR): scene_input file name.
    
    Sets up the SCENE_LIGHT input for the model.
    """
    
    # Defining scene input
    SCENE_INPUT_PATH  = "./data/scene_inputs/"
    
    conceptLTM = model.schemas['Concept_LTM']
    my_scene = TCG_LOADER.load_scene_light(input_file, SCENE_INPUT_PATH, input_name, conceptLTM)
    
    model.set_input(my_scene)
    
    return input_name
Exemple #6
0
def run_model(seed=None):
    """
    """
    SEM_INPUT = 'sem_inputs.json'
    INPUT_NAME = 'kick_static_focus_agent'
    
    language_system_P = TCG_production_system(grammar_name='TCG_grammar_VB_main', semantics_name='TCG_semantics_main')
    
    # Set up semantic input generator    
    conceptLTM = language_system_P.schemas['Concept_LTM']
    sem_inputs = TCG_LOADER.load_sem_input(SEM_INPUT, "./data/sem_inputs/")   
    speed_param = 1
    sem_gen = ls.SEM_GENERATOR(sem_inputs, conceptLTM, speed_param)
 
    generator = sem_gen.sem_generator(INPUT_NAME)
    
    (sem_insts, next_time, prop) = generator.next()
    
    # Test paramters
    language_system_P.params['Control']['task']['start_produce'] = 400
    language_system_P.params['Control']['task']['time_pressure'] = 200
    language_system_P.params['Grammatical_WM_P']['C2']['confidence_threshold'] = 0.3
    
    set_up_time = -10 # Starts negative to let the system settle before it receives its first input. Also, easier to handle input arriving at t=0.
    max_time = 900
    out_data = []
    for t in range(set_up_time, max_time):
        if next_time != None and t>next_time:
            (sem_insts, next_time, prop) = generator.next()
            language_system_P.set_input(sem_insts)
        language_system_P.update()
        # Store output
        output = language_system_P.get_output()
        if output['Grammatical_WM_P']:
            out_data.append(output['Grammatical_WM_P'])
        if output['Utter']:
            print "t:%i, '%s'" %(t, output['Utter'])
    
    # Output analysis
    res = prod_analyses(out_data)
    return res
def test2(seed=None):
    "Uses UTTER_GEN class for inputs"
    random.seed(seed)
    language_system_C = TCG_comprehension_system()
    # Display schema system
    language_system_C.system2dot(image_type='png', disp=True)

    ling_inputs = TCG_LOADER.load_ling_input("ling_inputs.json",
                                             "./data/ling_inputs/")
    utter_gen = ls.UTTER_GENERATOR(ling_inputs)

    input_name = 'test_naming'

    generator = utter_gen.utter_generator(input_name)

    (word_form, next_time) = generator.next()

    set_up_time = -10  # (Threshold  = 28??)Starts negative to let the system settle before it receives its first input. Also, easier to handle input arriving at t=0. Set up time really matters! Need to analyze more cleraly why and how much time is needed.
    max_time = 300
    save_states = []

    for t in range(set_up_time, max_time):
        if next_time != None and t > next_time:
            (word_form, next_time) = generator.next()
            print "t:%i, receive: %s" % (t, word_form)
            language_system_C.set_input(word_form)
        language_system_C.update()

        if t - set_up_time in save_states:
            TCG_VIEWER.display_gramWM_state(
                language_system_C.schemas['Grammatical_WM_C'], concise=True)

    language_system_C.schemas['Phonological_WM_C'].show_dynamics(
        inst_act=True, WM_act=False, c2_levels=False, c2_network=False)
    language_system_C.schemas['Grammatical_WM_C'].show_dynamics(
        inst_act=True, WM_act=True, c2_levels=True, c2_network=True)
    language_system_C.schemas['Grammatical_WM_C'].show_state()

    language_system_C.schemas['Semantic_WM'].show_dynamics()
    language_system_C.schemas['Semantic_WM'].show_SemRep()
Exemple #8
0
#        Print the cxn with name cxn_name (STR) if it is found in the grammar.
#        """        
#        cxn = self.find_construction(cxn_name)
#        if not(cxn):
#            print "%s not found..." % cxn_name
#        else:
#            print cxn     
###############################################################################

if __name__=='__main__':
    from loader import TCG_LOADER
    
    # Loading data
    grammar_name = 'TCG_grammar_VB_main'
    
    my_conceptual_knowledge = TCG_LOADER.load_conceptual_knowledge("TCG_semantics_main.json", "./data/semantics/")
    grammar_file = "%s.json" %grammar_name
    my_grammar = TCG_LOADER.load_grammar(grammar_file, "./data/grammars/", my_conceptual_knowledge)
    
    cxn = my_grammar.constructions[0]
    cxn2 = my_grammar.constructions[3]
    
    (cxn3, c, u_map) = CXN.unify(cxn, cxn.SynForm.form[0], cxn2)
#    cxn3.SemFrame.draw()
#    print [f.name for f in cxn3.SynForm.form]
#    print cxn3.SymLinks.SL
    
    cxn3.show()
    
    
    
Exemple #9
0
        
        """
        # First check if one of the concept is the neutral element.
        if self.neutral and ((cpt1 == self.neutral) or (cpt2 == self.neutral)):
            return True

        return super(CONCEPTUAL_KNOWLEDGE, self).match(cpt1,
                                                       cpt2,
                                                       match_type=match_type)


###############################################################################
if __name__ == '__main__':
    import viewer  # I have a bug in the module loading (circularity). This is a cheap hack to make it work for now.
    from loader import TCG_LOADER
    my_conceptual_knowledge = TCG_LOADER.load_conceptual_knowledge(
        "TCG_semantics.json", "./data/semantics/")
    clothing = my_conceptual_knowledge.find_meaning('CLOTHING')
    dress = my_conceptual_knowledge.find_meaning('DRESS')
    print dress.match(clothing)

    color = my_conceptual_knowledge.find_meaning('COLOR')
    blue = my_conceptual_knowledge.find_meaning('BLUE')
    print blue.match(color)

    human = my_conceptual_knowledge.find_meaning('HUMAN')
    woman = my_conceptual_knowledge.find_meaning('WOMAN')
    obj = my_conceptual_knowledge.find_meaning('OBJECT')
    print woman.match(human)

    clothing = my_conceptual_knowledge.find_meaning('CLOTHING')
    neutral = my_conceptual_knowledge.find_meaning('?')
Exemple #10
0
def SALVIA_P_light(name='SALVIA_P_verbal_guidance',
                   grammar_name='TCG_grammar_VB_main',
                   semantics_name='TCG_semantics_main',
                   grammar_path='./data/grammars/',
                   semantics_path='./data/semantics/'):
    """
    Creates and returns a light version of the SALVIA production model.
    It bypasses the VisualWM and the Conceptualizer
    """
    # Instantiating all the necessary system schemas
    scene_perception = ps.SCENE_PERCEPTION()

    conceptLTM = ls.CONCEPT_LTM()

    semanticWM = ls.SEMANTIC_WM()
    grammaticalWM_P = ls.GRAMMATICAL_WM_P()
    grammaticalLTM = ls.GRAMMATICAL_LTM()
    cxn_retrieval_P = ls.CXN_RETRIEVAL_P()
    phonWM_P = ls.PHON_WM_P()
    control = ls.CONTROL()
    utter = ls.UTTER()

    # Defining schema to brain mappings.
    brain_mappings = {
        'Scene_perception': ['Ventral stream'],
        'Concept_LTM': [''],
        'Semantic_WM': ['left_SFG', 'LIP', 'Hippocampus'],
        'Grammatical_WM_P': ['left_BA45', 'leftBA44'],
        'Grammatical_LTM': ['left_STG', 'left_MTG'],
        'Cxn_retrieval_P': [],
        'Phonological_WM_P': ['left_BA6'],
        'Utter': [''],
        'Control': ['DLPFC']
    }

    schemas = [
        scene_perception, conceptLTM, grammaticalLTM, cxn_retrieval_P,
        semanticWM, grammaticalWM_P, phonWM_P, utter, control
    ]

    # Creating model and adding system schemas
    model = st.MODEL(name)
    model.add_schemas(schemas)

    # Defining connections
    model.add_connection(scene_perception, 'to_semantic_WM', semanticWM,
                         'from_conceptualizer')
    model.add_connection(semanticWM, 'to_visual_WM', scene_perception,
                         'from_semantic_WM')

    model.add_connection(semanticWM, 'to_cxn_retrieval_P', cxn_retrieval_P,
                         'from_semantic_WM')
    model.add_connection(grammaticalLTM, 'to_cxn_retrieval_P', cxn_retrieval_P,
                         'from_grammatical_LTM')
    model.add_connection(cxn_retrieval_P, 'to_grammatical_WM_P',
                         grammaticalWM_P, 'from_cxn_retrieval_P')
    model.add_connection(semanticWM, 'to_grammatical_WM_P', grammaticalWM_P,
                         'from_semantic_WM')
    model.add_connection(grammaticalWM_P, 'to_semantic_WM', semanticWM,
                         'from_grammatical_WM_P')
    model.add_connection(grammaticalWM_P, 'to_phonological_WM_P', phonWM_P,
                         'from_grammatical_WM_P')
    model.add_connection(phonWM_P, 'to_grammatical_WM_P', grammaticalWM_P,
                         'from_phonological_WM_P')
    model.add_connection(semanticWM, 'to_control', control, 'from_semantic_WM')
    model.add_connection(phonWM_P, 'to_utter', utter, 'from_phonological_WM_P')
    model.add_connection(phonWM_P, 'to_control', control,
                         'from_phonological_WM_P')
    model.add_connection(control, 'to_grammatical_WM_P', grammaticalWM_P,
                         'from_control')
    model.add_connection(control, 'to_semantic_WM', semanticWM, 'from_control')

    model.set_input_ports([scene_perception.find_port('from_input')])
    model.set_output_ports([
        utter.find_port('to_output'),
        scene_perception.find_port('to_output')
    ])

    # Setting up schema to brain mappings
    description_brain_mapping = st.BRAIN_MAPPING()
    description_brain_mapping.schema_mapping = brain_mappings
    model.brain_mapping = description_brain_mapping

    # Parameters
    system_names = model.schemas.keys()
    model_params = parameters(system_names)
    model.update_params(model_params)

    grammaticalLTM.init_act = grammaticalWM_P.params['C2'][
        'confidence_threshold']
    # Loading data

    semantics_file = "%s.json" % semantics_name
    my_conceptual_knowledge = TCG_LOADER.load_conceptual_knowledge(
        semantics_file, semantics_path)

    grammar_file = "%s.json" % grammar_name
    my_grammar = TCG_LOADER.load_grammar(grammar_file, grammar_path,
                                         my_conceptual_knowledge)

    # Initialize concept LTM content
    conceptLTM.initialize(my_conceptual_knowledge)

    # Initialize grammatical LTM content
    grammaticalLTM.initialize(my_grammar)

    return model
Exemple #11
0
def TCG_language_system(name='language_system',
                        grammar_name='TCG_grammar_VB_main',
                        semantics_name='TCG_semantics_main',
                        grammar_path='./data/grammars/',
                        semantics_path='./data/semantics/'):
    """
    Creates and returns the TCG language model, including both production and comprehension.
    """
    # Instantiating all the necessary system schemas
    semanticWM = ls.SEMANTIC_WM()
    conceptLTM = ls.CONCEPT_LTM()
    grammaticalLTM = ls.GRAMMATICAL_LTM()
    grammaticalWM_P = ls.GRAMMATICAL_WM_P()
    cxn_retrieval_P = ls.CXN_RETRIEVAL_P()
    grammaticalWM_C = ls.GRAMMATICAL_WM_C()
    cxn_retrieval_C = ls.CXN_RETRIEVAL_C()
    phonWM_P = ls.PHON_WM_P()
    utter = ls.UTTER()
    phonWM_C = ls.PHON_WM_C()
    control = ls.CONTROL()

    # Defining schema to brain mappings.
    language_mapping = {
        'Semantic_WM': ['left_SFG', 'LIP', 'Hippocampus'],
        'Grammatical_WM_P': ['left_BA45', 'leftBA44'],
        'Grammatical_LTM': ['left_STG', 'left_MTG'],
        'Cxn_retrieval_P': [],
        'Phonological_WM_P': ['left_BA6'],
        'Utter': [''],
        'Cxn_retrieval_C': [],
        'Phonological_WM_C': ['Wernicke'],
        'Grammatical_WM_C': ['lBA44, lBA45'],
        'Control': ['DLPFC'],
        'Concept_LTM': ['']
    }

    # Initializing model
    model = st.MODEL(name)

    # Setting up schema to brain mappings
    language_brain_mapping = st.BRAIN_MAPPING()
    language_brain_mapping.schema_mapping = language_mapping
    model.brain_mapping = language_brain_mapping

    # Setting up language model.
    language_schemas = [
        semanticWM, conceptLTM, grammaticalLTM, cxn_retrieval_P,
        grammaticalWM_P, phonWM_P, utter, phonWM_C, grammaticalWM_C,
        cxn_retrieval_C, control
    ]

    model.add_schemas(language_schemas)
    model.add_connection(semanticWM, 'to_cxn_retrieval_P', cxn_retrieval_P,
                         'from_semantic_WM')
    model.add_connection(grammaticalLTM, 'to_cxn_retrieval_P', cxn_retrieval_P,
                         'from_grammatical_LTM')
    model.add_connection(cxn_retrieval_P, 'to_grammatical_WM_P',
                         grammaticalWM_P, 'from_cxn_retrieval_P')
    model.add_connection(semanticWM, 'to_grammatical_WM_P', grammaticalWM_P,
                         'from_semantic_WM')
    model.add_connection(grammaticalWM_P, 'to_semantic_WM', semanticWM,
                         'from_grammatical_WM_P')
    model.add_connection(grammaticalWM_P, 'to_phonological_WM_P', phonWM_P,
                         'from_grammatical_WM_P')
    model.add_connection(phonWM_P, 'to_grammatical_WM_P', grammaticalWM_P,
                         'from_phonological_WM_P')
    model.add_connection(semanticWM, 'to_control', control, 'from_semantic_WM')
    model.add_connection(phonWM_P, 'to_control', control,
                         'from_phonological_WM_P')
    model.add_connection(phonWM_P, 'to_utter', utter, 'from_phonological_WM_P')
    model.add_connection(control, 'to_grammatical_WM_P', grammaticalWM_P,
                         'from_control')

    model.add_connection(grammaticalLTM, 'to_cxn_retrieval_C', cxn_retrieval_C,
                         'from_grammatical_LTM')
    model.add_connection(phonWM_C, 'to_grammatical_WM_C', grammaticalWM_C,
                         'from_phonological_WM_C')
    model.add_connection(grammaticalWM_C, 'to_cxn_retrieval_C',
                         cxn_retrieval_C, 'from_grammatical_WM_C')
    model.add_connection(cxn_retrieval_C, 'to_grammatical_WM_C',
                         grammaticalWM_C, 'from_cxn_retrieval_C')
    model.add_connection(control, 'to_semantic_WM', semanticWM, 'from_control')
    model.add_connection(control, 'to_grammatical_WM_C', grammaticalWM_C,
                         'from_control')
    model.add_connection(grammaticalWM_C, 'to_semantic_WM', semanticWM,
                         'from_grammatical_WM_C')
    model.add_connection(conceptLTM, 'to_semantic_WM', semanticWM,
                         'from_concept_LTM')

    model.set_input_ports([phonWM_C.find_port('from_input')])
    model.set_output_ports([utter.find_port('to_output')])

    # Parameters
    system_names = model.schemas.keys()
    model_params = parameters(system_names)
    model.update_params(model_params)

    #    grammaticalLTM.init_act = grammaticalWM_P.params['C2']['confidence_threshold']*0.5

    # Loading data
    semantics_file = "%s.json" % semantics_name
    my_conceptual_knowledge = TCG_LOADER.load_conceptual_knowledge(
        semantics_file, semantics_path)
    grammar_file = "%s.json" % grammar_name
    my_grammar = TCG_LOADER.load_grammar(grammar_file, grammar_path,
                                         my_conceptual_knowledge)

    # Initialize conceptual LTM content
    conceptLTM.initialize(my_conceptual_knowledge)

    # Initialize grammatical LTM content
    grammaticalLTM.initialize(my_grammar)

    return