def Preprocessing4(path): files = [] for filename in glob.glob(path): files.append(filename) #spectrum's S/N >= 15 Better_files = [] for input_file in files: spec = ls.rdspec(input_file) if spec.snr[0] >= 15: Better_files.append(input_file) #read and normalize spectrum samples = [] for input_file in Better_files: spec = ls.rdspec(input_file) flux = np.array(spec.flux) wavelength = np.array(spec.wave) flux_norm, flux_cont = norm.normalize_spectrum(wavelength, flux, (3500., 9500.), 100.) num_end = 0 num_head = 0 for i in range(len(wavelength)): if wavelength[i] <= 9500: num_end += 1 if wavelength[i] <= 3500: num_head += 1 data_spec = [wavelength[num_head:num_end], flux_norm[num_head:num_end]] samples.append(data_spec) return samples
def Preprocessing3(path): files = [] for filename in glob.glob(path): files.append(filename) #spectrum's S/N >= 15 Better_files = [] for input_file in files: spec = ls.rdspec(input_file) if spec.snr[0] >= 15: Better_files.append(input_file) #read and normalize spectrum samples = [] for input_file in Better_files: hdu_list = fits.open(input_file, memmap=True) data = Table(hdu_list[1].data) flux = np.array(data['flux']) wavelength = np.array(10**data['loglam']) flux_norm, flux_cont = norm.normalize_spectrum(wavelength, flux, (3500., 9500.), 100.) num_end = 0 num_head = 0 for i in range(len(wavelength)): if wavelength[i] <= 9500: num_end += 1 if wavelength[i] <= 3500: num_head += 1 data_spec = [wavelength[num_head:num_end], flux_norm[num_head:num_end]] samples.append(data_spec) return samples
def Preprocessing6(path): files = [] for filename in glob.glob(path): files.append(filename) samples = [] for input_file in files: spec = ls.rdspec(input_file) flux = np.array(spec.flux) wavelength = np.array(spec.wave) flux_norm, flux_cont = norm.normalize_spectrum(wavelength, flux, (3500., 9500.), 100.) # num_end = 0 # num_head = 0 # for i in range(len(wavelength)): # if wavelength[i] <= 9500: # num_end += 1 # if wavelength[i] <= 3500: # num_head += 1 data_spec = [wavelength, flux_norm] samples.append(data_spec) return samples