Exemple #1
0
from collections import defaultdict
import itertools

from base import Summarizer
from log_conf import Logger
from util.tokenization import WordTokenizer, SentTokenizer


logger = Logger('.'.join(__file__.split('/')[-2:-1])).logger


class Summarizer(Summarizer):
    '''
    classdocs
    '''

    def __init__(self, args, opts):
        '''
        Constructor
        '''

    def summarize(self, extracted_refs, facet_results, max_length=250):
        '''
        Summarizes the extracted references based on the facet results

        Chooses from facets naively

        Args:
            extracted_refs(list) -- results of the method.run (e.g. simple.py)
            facet_results(dict) -- facets for each extracted reference
                Look at data/task1b_results1.json
Exemple #2
0
from _collections import defaultdict
from util.rouge.PythonROUGE.rouge_wrapper import calc_rouge
from random import randint
from copy import deepcopy
import itertools
from log_conf import Logger
from summarizer.mmr_summarizer import MMR

from util.aritmatic_operations import mean_conf
from util.tokenization import WordTokenizer
from util.common import write_json_as_csv, hash_obj, hash_dict
import gzip

w_t = WordTokenizer(stem=False)

logger = Logger(__file__.split('/')[-1]).logger

path = constants.get_path()
result_outpath = 'tmp/tmpres/'

_ANNS_DIR = path['ann']
_ANNS_PATH = path['ann_json']
CACHE = path['cache']

valid_topics = ['all']
# doc_mod = DocumentsModel(_ANNS_DIR)

CACHE_FILE = constants.join_path(
    CACHE, 'umls.json')
if os.path.isfile(CACHE_FILE):
    try: