Exemple #1
0
    def test_print_in_file_only_error_or_higher_levels(self):
        log = LogHelper()

        log.debug(self.DEBUG_MESSAGE)
        log.info(self.INFO_MESSAGE)
        log.warning(self.WARNING_MESSAGE)
        log.error(self.ERROR_MESSAGE)
        log.fatal(self.FATAL_MESSAGE)

        log_name = 'test_print_in_file_only_error_or_higher_levels.log'
        self.assertTrue(log.logs.__len__() == 5)
        self.assertEqual(log.save_logs(log_name, log_level=LogHelper.ERROR),
                         True)
        with open(f'./{log_name}') as file:
            data = file.read()
            self.assertFalse(self.DEBUG_MESSAGE in data)
            self.assertFalse(self.INFO_MESSAGE in data)
            self.assertFalse(self.WARNING_MESSAGE in data)
            self.assertTrue(self.ERROR_MESSAGE in data)
            self.assertTrue(self.FATAL_MESSAGE in data)
Exemple #2
0
 def add_log(self, log):
     """Add a log to InfluxDB"""
     mapped_log = LogHelper().prepare_influx_insert_query(log)
     self.influx_client.write_points(mapped_log)
Exemple #3
0
 def __init__(self):
     LogHelper.log("created")
Exemple #4
0
    def __init__(self, module_dir, user='******'):
        BaseConfig.__init__(self)
        print("module dir: " + module_dir)

        self.test_config = BaseConfig()
        self.test_config.batch_size = 1
        self.wv = self.test_config.wv

        # tf.flags.DEFINE_integer("embedding_dim_cn", 300, "Dimensionality of character embedding (default: 128)")
        # tf.flags.DEFINE_integer("batch_size_classify", 1, "Batch Size (default: 64)")
        #
        # self.FLAGS = tf.flags.FLAGS
        # self.FLAGS._parse_flags()
        # print("\nParameters:")
        # for attr, value in sorted(self.FLAGS.__dict__['__flags'].items()):
        #     print("{}={}".format(attr.upper(), value))
        # print("")

        checkpoint_dir = os.path.join(module_dir, "cn", "checkpoints")
        classes_file = codecs.open(os.path.join(module_dir, "cn", "classes"),
                                   "r", "utf-8")
        self.classes = list(line.strip() for line in classes_file.readlines())
        classes_file.close()

        print("\nEvaluating...\n")

        # Evaluation
        # ==================================================
        checkpoint_file = tf.train.latest_checkpoint(checkpoint_dir)
        graph = tf.Graph()
        with graph.as_default():
            with tf.device("/cpu:0"):
                session_conf = tf.ConfigProto(
                    allow_soft_placement=self.test_config.allow_soft_placement,
                    log_device_placement=self.test_config.log_device_placement)
                session_conf.gpu_options.allow_growth = True
                self.sess = tf.Session(config=session_conf)
                # Load the saved meta graph and restore variables
                saver = tf.train.import_meta_graph(
                    "{}.meta".format(checkpoint_file))
                saver.restore(self.sess, checkpoint_file)

                # Get the placeholders from the graph by name
                self.embedded_chars = graph.get_operation_by_name(
                    "embedded_chars").outputs[0]
                # input_y = graph.get_operation_by_name("input_y").outputs[0]
                self.dropout_keep_prob = graph.get_operation_by_name(
                    "dropout_keep_prob").outputs[0]

                # Tensors we want to evaluate
                self.scores = graph.get_operation_by_name(
                    "output/scores").outputs[0]
                self.probabilities = graph.get_operation_by_name(
                    "output/probabilities").outputs[0]

        this_file = inspect.getfile(inspect.currentframe())
        dir_name = os.path.abspath(os.path.dirname(this_file))
        self.chat_log_path = os.path.join(dir_name, '..',
                                          'log/module/cnn_classify')
        if not os.path.exists(os.path.join(self.chat_log_path, user)):
            if not os.path.exists(self.chat_log_path):
                os.makedirs(self.chat_log_path)
            f = open(self.chat_log_path + '/' + user, 'w', encoding='utf-8')
            f.close()

        if not self.lh:
            self.lh = LogHelper(user, self.chat_log_path)