def test_saver_file_empty(self, mock_isfile): mock_isfile.return_value = True self.saver = Saver("test", "./", 3, self.lock) read_data = pickle.dumps({}) mockOpen = mock_open(read_data=read_data) with patch('builtins.open', mockOpen): self.saver.save(self.model, condition="Test", result=self.result)
def test_saver_no_file(self, mock_isfile): mock_isfile.return_value = False self.saver = Saver("test", "./", 3, self.lock) read_data = "" mockOpen = mock_open(read_data=read_data) with patch('builtins.open', mockOpen): self.saver.save(self.model, condition="Test", result= self.result)
def test_load_no_file(self, mock_isfile): mock_isfile.return_value = False self.saver = Saver("test", "./", 3, self.lock) read_data = pickle.dumps({"LSTM": {3:self.model.state_dict()}}) mockOpen = mock_open(read_data=read_data) with self.assertRaises(Exception): with patch('builtins.open', mockOpen): self.saver.load(self.model)
def test_load_file(self, mock_isfile): mock_isfile.return_value = True self.saver = Saver("test", "./", 3, self.lock) read_data = pickle.dumps({"LSTM": {3:self.model.state_dict()}}) mockOpen = mock_open(read_data=read_data) with patch('builtins.open', mockOpen): model = self.saver.load(self.model) self.assertIsInstance(model, LSTMLayer)
class UtilTest(unittest.TestCase): def setUp(self): self.lock = torch.multiprocessing.get_context('spawn').Lock() self.model = LSTMLayer(num_classes=5) cardinality = Cardinality(3, "", "") cardinality.list_classes = [1,1,1,2,2,3,4,5,6] cardinality.counter= {1:10, 2:100, 3:100, 4:100, 6:1000, 5:1000} cardinality.compute_position() self.result = Result(cardinality) @patch('os.path.isfile') def test_saver_no_file(self, mock_isfile): mock_isfile.return_value = False self.saver = Saver("test", "./", 3, self.lock) read_data = "" mockOpen = mock_open(read_data=read_data) with patch('builtins.open', mockOpen): self.saver.save(self.model, condition="Test", result= self.result) @patch('os.path.isfile') def test_saver_file(self, mock_isfile): mock_isfile.return_value = True self.saver = Saver("test", "./", 3, self.lock) read_data = pickle.dumps({"LSTM": {3:self.model.state_dict()}}) mockOpen = mock_open(read_data=read_data) with patch('builtins.open', mockOpen): self.saver.save(self.model, condition="Test", result= self.result) @patch('os.path.isfile') def test_saver_file_empty(self, mock_isfile): mock_isfile.return_value = True self.saver = Saver("test", "./", 3, self.lock) read_data = pickle.dumps({}) mockOpen = mock_open(read_data=read_data) with patch('builtins.open', mockOpen): self.saver.save(self.model, condition="Test", result=self.result) @patch('os.path.isfile') def test_load_file(self, mock_isfile): mock_isfile.return_value = True self.saver = Saver("test", "./", 3, self.lock) read_data = pickle.dumps({"LSTM": {3:self.model.state_dict()}}) mockOpen = mock_open(read_data=read_data) with patch('builtins.open', mockOpen): model = self.saver.load(self.model) self.assertIsInstance(model, LSTMLayer) @patch('os.path.isfile') def test_load_no_file(self, mock_isfile): mock_isfile.return_value = False self.saver = Saver("test", "./", 3, self.lock) read_data = pickle.dumps({"LSTM": {3:self.model.state_dict()}}) mockOpen = mock_open(read_data=read_data) with self.assertRaises(Exception): with patch('builtins.open', mockOpen): self.saver.load(self.model)
def __init__(self, cardinality: Cardinality, lock: threading.Lock, batch_size=128, path_model="", name_dataset="", batch_result=20000, exclude_test=False, stoppingcondition="earlystopping", condition_value=0.005, condition_step=3, duration=5, condition_epoch=3): self.dataset = cardinality self.cardinality = self.dataset.cardinality self.batch_size = batch_size self.model = -1 # self.stopping_condition = StoppingCondition(method="earlystopping", condition_value = 0.005, condition_step=3) if stoppingcondition == "earlystopping": self.stopping_condition = StoppingCondition( method=stoppingcondition, condition_value=condition_value, condition_step=condition_step) elif stoppingcondition == "timer": self.stopping_condition = StoppingCondition( method=stoppingcondition, duration=duration) elif stoppingcondition == "epoch": self.stopping_condition = StoppingCondition( method=stoppingcondition, condition_epoch=condition_epoch) else: raise Exception( "Stopping condition method is not implemented. Please use 'earlystopping', 'timer', or 'epoch'" ) self.path_model = path_model self.name_dataset = name_dataset self.lock = lock self.exlude_test = exclude_test self.saver = Saver(path_model=self.path_model, name_model=self.name_dataset, cardinality=self.cardinality, lock=self.lock) self.batch_result = batch_result if torch.cuda.is_available(): self.device = torch.device('cuda') logger.info("Starting learning on GPU") else: self.device = torch.device('cpu') logger.info("Starting learning on CPU")
class Worker_single(): """A single worker is responsible for the creation of the dataloader, the learning/testing step and for saving files of one cardinality. Args: cardinality (Cardinality): the cardinality object containing the data. lock (threading.Lock): lock used for saving files in the same file for all cardinalities. batch_size (int, optional): size of the batch. Defaults to 128. path_model (str, optional): path to the model to save. Defaults to "". name_dataset (str, optional): name of the dataset. Defaults to "". batch_result (int, optional): show results each batch_result number of batchs. Defaults to 2000. exclude_test (boolean, optional): exlude the testing step during the learning step. Can be use with the timer as stopping condition to have an exact duration. stoppingcondition (str, optional): condition to stop the learning step (timer, earlystopping, epoch). Defaults to earlystopping. condition_value (float, optional): stoppingcondition option. Value of the increase. Defaults to 0.005. condition_step (int, optional): stoppingcondition option. Number of steps. Defaults to 3. duration (int, optional): stoppingcondition option. Duration of the learning step in minute. Defaults to 60. condition_epoch (int, optional): stoppingcondition option. Number of epochs to be done. Defaults to 3. """ def __init__(self, cardinality: Cardinality, lock: threading.Lock, batch_size=128, path_model="", name_dataset="", batch_result=20000, exclude_test=False, stoppingcondition="earlystopping", condition_value=0.005, condition_step=3, duration=5, condition_epoch=3): self.dataset = cardinality self.cardinality = self.dataset.cardinality self.batch_size = batch_size self.model = -1 # self.stopping_condition = StoppingCondition(method="earlystopping", condition_value = 0.005, condition_step=3) if stoppingcondition == "earlystopping": self.stopping_condition = StoppingCondition( method=stoppingcondition, condition_value=condition_value, condition_step=condition_step) elif stoppingcondition == "timer": self.stopping_condition = StoppingCondition( method=stoppingcondition, duration=duration) elif stoppingcondition == "epoch": self.stopping_condition = StoppingCondition( method=stoppingcondition, condition_epoch=condition_epoch) else: raise Exception( "Stopping condition method is not implemented. Please use 'earlystopping', 'timer', or 'epoch'" ) self.path_model = path_model self.name_dataset = name_dataset self.lock = lock self.exlude_test = exclude_test self.saver = Saver(path_model=self.path_model, name_model=self.name_dataset, cardinality=self.cardinality, lock=self.lock) self.batch_result = batch_result if torch.cuda.is_available(): self.device = torch.device('cuda') logger.info("Starting learning on GPU") else: self.device = torch.device('cpu') logger.info("Starting learning on CPU") def create_dataloader(self, validation_split=0.6, condition="Test", subsample=False, subsample_split=0.01) -> DataLoader: """Create the dataloader for the learning/testing step. Args: validation_split (float, optional): ratio between the learning and the testing set. Defaults to 0.6. condition (str, optional): if Test the dataloader contains the test data. Else it contains the learning data. Defaults to "Test". subsample (bool, optional): use only a subsample of the data. Can be used for the learning and/or the testing step. Defaults to False. subsample_split (float, optional): ratio of the data to use. Defaults to 0.01. Returns: DataLoader: PyTorch dataloader corresponding to the previous features. """ if not self.dataset.loaded: self.dataset.load_files() self.dataset.compute_position() self.size = len(self.dataset) logger.info("Cardinality: " + str(self.dataset.cardinality) + " size of dataset: " + str(self.size)) logger.info("Nb of classes: " + str(self.dataset.number_of_classes)) # Set the random seed to have always the same random value. random_seed = 42 np.random.seed(random_seed) split = int(np.floor(validation_split * self.size)) indices = list(range(self.size)) np.random.shuffle(indices) if condition == "Test": indices = indices[:split] else: indices = indices[split:] if subsample: split = int(np.floor(subsample_split * len(indices))) np.random.shuffle(indices) indices = indices[:split] sampler = SubsetRandomSampler(indices) dataloader = DataLoader(self.dataset, batch_size=self.batch_size, pin_memory=True, drop_last=True, num_workers=5, sampler=sampler) # type: ignore return dataloader def load_model(self): """Load the learned model from a previous state Raises: e: file is not found """ self.model = LSTMLayer(num_classes=self.dataset.number_of_classes).to( self.device) try: self.model = self.saver.load(model=self.model) except FileNotFoundError as e: logger.critical("No such file: " + self.path_model + self.name_dataset + "_model.lf" + ".torch") print("Raising: ", e) raise e def train(self, validation_split=0.6, resuming=False): """Train the model Args: validation_split (float, optional): ratio between testing and learning set. Defaults to 0.6. resuming (bool, optional): resume the learning from a previous step. Not implemented yet. Defaults to False. """ # Create the dataloader dataloader_train = self.create_dataloader( validation_split=validation_split, condition="train") if resuming: self.load_model() else: self.model = LSTMLayer(num_classes=self.dataset.number_of_classes, batch_size=self.batch_size).to(self.device) # Create the results result = Result(self.dataset, condition="Train") optimizer = optim.Adam(self.model.parameters()) loss_fn = nn.CrossEntropyLoss() self.model.train() logger.info("Cardinality: " + str(self.cardinality) + " Starting the learning step") # Start the learning while not self.stopping_condition.stop(): for index_batch, batch in enumerate(dataloader_train): optimizer.zero_grad() label = batch['output'] input_data = batch['input'].to(self.device) prediction = self.model(input_data) loss = loss_fn(prediction, label.to(self.device)) loss.backward() optimizer.step() result.update(prediction, label) # Compute the results each 2000 batchs. if index_batch % self.batch_result == 0 and index_batch != 0: result.computing_result(progress=index_batch / len(dataloader_train)) self.saver.save(model=self.model, result=result, condition="temp") if not self.exlude_test: # Test only on a subsample self.test(subsample=True, subsample_split=0.1) print(self.stopping_condition) # Test if we stop only for the timer method at each batch if self.stopping_condition.method == "timer" and self.stopping_condition.stop( ): logger.debug("[Stopping] Cardinality: " + str(self.cardinality) + " " + str(self.stopping_condition) + " stopping learning step.") break # At the end of one epoch, use the all testing test and update the condition if not self.exlude_test: self.test() result.computing_result(reinit=True, progress=1) if self.stopping_condition.stop(): logger.debug("[Stopping] Cardinality: " + str(self.cardinality) + " " + str(self.stopping_condition) + " stopping learning step.") self.saver.save(model=self.model, result=result, condition="Train") # logger.info("[Test] Cardinality: " + str(self.cardinality) + " " + str(self.stopping_condition) + " stopping learning step.") # self.saver.save(model=self.model.state_dict()) def test(self, validation_split=0.6, subsample=False, subsample_split=0.01): """Test the model Args: validation_split (float, optional): ratio between testing and learning set. Defaults to 0.6. subsample (bool, optional): if False, use all the available data, if True, use only a ratio of the data (subsample_split*data). Defaults to False. subsample_split (float, optional): ratio of the data to use. Defaults to 0.01. """ dataloader_test = self.create_dataloader( validation_split=validation_split, condition="Test", subsample=subsample, subsample_split=0.01) result = Result(self.dataset, condition="Test", subsample=subsample) if self.model == -1: self.load_model() self.model.eval() self.conf_matrix = torch.zeros(self.dataset.number_of_classes, self.dataset.number_of_classes) for index_batch, batch in enumerate(dataloader_test): label = batch['output'] input_data = batch['input'].to(self.device) prediction = self.model(input_data) result.update(prediction, label) if index_batch % self.batch_result == 0: result.computing_result(reinit=False, progress=index_batch / len(dataloader_test)) self.model.train() self.saver.save(model=self.model, result=result, condition="Test") result.computing_result(reinit=True, progress=1) self.stopping_condition.update(result.microf1) self.stopping_condition.stop()