def test_default(self):
        lines = LINES.copy()
        expected_results = RESULTS.copy()

        # Use port wind speed, output in m/s
        tw = TrueWindsTransform(data_id='truw',
                                course_fields='S330CourseTrue',
                                speed_fields='S330Speed',
                                heading_fields='S330HeadingTrue',
                                wind_dir_fields='MwxPortRelWindDir',
                                wind_speed_fields='MwxPortRelWindSpeed',
                                convert_speed_factor=0.5144)
        parse = ParseNMEATransform()

        while lines:
            record = parse.transform(lines.pop(0))
            result = tw.transform(record)
            expected = expected_results.pop(0)
            if expected:
                self.assertEqual(result.data_id, 'truw')
                self.assertEqual(result.message_type, None)
                self.assertEqual(result.timestamp, expected['timestamp'])
                self.assertAlmostEqual(result.fields['ApparentWindDir'],
                                       expected['fields']['ApparentWindDir'],
                                       delta=0.00001)
                self.assertAlmostEqual(result.fields['TrueWindDir'],
                                       expected['fields']['TrueWindDir'],
                                       delta=0.00001)
                self.assertAlmostEqual(result.fields['TrueWindSpeed'],
                                       expected['fields']['TrueWindSpeed'],
                                       delta=0.00001)
                self.assertDictEqual(result.metadata, expected['metadata'])
            else:
                self.assertIsNone(result)
        return
Exemple #2
0
  def test_error(self):
    p = ParseNMEATransform()
    q = QCFilterTransform(bounds='KnudLFDepth:0:6000,KnudHFDepth:0:5000')

    record = 'knud 2017-11-04:05:12:21.981359'
    self.assertEqual(q.transform(record),
                     'Improper format record: knud 2017-11-04:05:12:21.981359')

    record = p.transform('knud 2017-11-04:05:12:21.981359 3.5kHz,5146.29,0,,,,1500,-39.583558,-37.466183')
    self.assertEqual(q.transform(record),
                     'KnudHFDepth: non-numeric value: "None"')
  def test_json(self):
    transform = ParseNMEATransform(json=True)
    self.assertIsNone(transform.transform(None))

    for i in range(len(LINES)):
      line = LINES[i]
      record = RECORDS[i]
      logging.debug('line: %s', line)
      result = transform.transform(line)
      logging.debug('result: %s', result)

      self.assertEqual(ordered(json.loads(result)), ordered(json.loads(JSON[i])))
Exemple #4
0
    def test_error(self):
        p = ParseNMEATransform()
        q = QCFilterTransform(bounds='KnudLFDepth:0:6000,KnudHFDepth:0:5000')

        record = 'knud 2017-11-04T05:12:21.981359Z'
        self.assertEqual(
            q.transform(record),
            'Record passed to QCFilterTransform was neither a dict nor a DASRecord. Type was <class \'str\'>: knud 2017-11-04T05:12:21.981359Z'
        )

        record = p.transform(
            'knud 2017-11-04T05:12:21.981359Z 3.5kHz,5146.29,0,,,,1500,-39.583558,-37.466183'
        )
        self.assertEqual(q.transform(record),
                         'KnudHFDepth: non-numeric value: "None"')
Exemple #5
0
  def test_message(self):
    p = ParseNMEATransform()
    q = QCFilterTransform(bounds='KnudLFDepth:0:6000,KnudHFDepth:0:5000',
                          message='The sky is falling!')

    record = 'knud 2017-11-04:05:12:21.981359'
    self.assertEqual(q.transform(record), 'The sky is falling!')
    def test_default(self):
        transform = ParseNMEATransform()
        self.assertIsNone(transform.transform(None))

        for i in range(len(LINES)):
            line = LINES[i]
            record = RECORDS[i]
            logging.debug('line: %s', line)
            result = transform.transform(line)
            logging.debug('result: %s', result)

            self.assertEqual(record['data_id'], result.data_id)
            self.assertEqual(record['message_type'], result.message_type)
            self.assertEqual(record['timestamp'], result.timestamp)
            self.assertDictEqual(record['fields'], result.fields)
            self.assertDictEqual(record['metadata'], result.metadata)
Exemple #7
0
    def test_field_dict(self):
        parse = ParseNMEATransform()

        recip = RecipTransform()
        port_winds = TrueWindsTransform(
            course_field='S330CourseTrue',
            speed_field='S330Speed',
            heading_field='S330HeadingTrue',
            wind_dir_field='MwxPortRelWindDir',
            wind_speed_field='MwxPortRelWindSpeed',
            true_dir_name='PortTrueWindDir',
            true_speed_name='PortTrueWindSpeed',
            apparent_dir_name='PortApparentWindDir',
            convert_speed_factor=0.5144)
        stbd_winds = TrueWindsTransform(
            course_field='S330CourseTrue',
            speed_field='S330Speed',
            heading_field='S330HeadingTrue',
            wind_dir_field='MwxStbdRelWindDir',
            wind_speed_field='MwxStbdRelWindSpeed',
            true_dir_name='StbdTrueWindDir',
            true_speed_name='StbdTrueWindSpeed',
            apparent_dir_name='StbdApparentWindDir',
            convert_speed_factor=0.5144)

        # Test using DASRecords as input
        t = ComposedDerivedDataTransform(
            transforms=[recip, port_winds, stbd_winds])

        field_values = {}
        # Build the field dict
        for i in range(len(LINES)):
            line = LINES[i]
            record = parse.transform(line)
            if not record:
                continue

            for field, value in record.fields.items():
                if not field in field_values:
                    field_values[field] = []
                field_values[field].append([record.timestamp, value])

        results = t.transform(field_values)
        self.assertRecursiveAlmostEqual(results, FIELD_DICT_RESULT)
        """
Exemple #8
0
    def test_message(self):
        p = ParseNMEATransform()
        q = QCFilterTransform(bounds='KnudLFDepth:0:6000,KnudHFDepth:0:5000',
                              message='The sky is falling!')
        record = {'KnudLFDepth': 5999}
        self.assertEqual(q.transform(record), None)

        record = {'KnudLFDepth': 6001}
        self.assertEqual(q.transform(record), 'The sky is falling!')
Exemple #9
0
    def test_das_record(self):
        """Test using DASRecords as input."""

        parse = ParseNMEATransform()

        recip = RecipTransform()
        port_winds = TrueWindsTransform(
            course_field='S330CourseTrue',
            speed_field='S330Speed',
            heading_field='S330HeadingTrue',
            wind_dir_field='MwxPortRelWindDir',
            wind_speed_field='MwxPortRelWindSpeed',
            true_dir_name='PortTrueWindDir',
            true_speed_name='PortTrueWindSpeed',
            apparent_dir_name='PortApparentWindDir',
            convert_speed_factor=0.5144)
        stbd_winds = TrueWindsTransform(
            course_field='S330CourseTrue',
            speed_field='S330Speed',
            heading_field='S330HeadingTrue',
            wind_dir_field='MwxStbdRelWindDir',
            wind_speed_field='MwxStbdRelWindSpeed',
            true_dir_name='StbdTrueWindDir',
            true_speed_name='StbdTrueWindSpeed',
            apparent_dir_name='StbdApparentWindDir',
            convert_speed_factor=0.5144)
        t = ComposedDerivedDataTransform(
            transforms=[recip, port_winds, stbd_winds])

        for i in range(len(LINES)):
            line = LINES[i]
            record = parse.transform(line)
            result = t.transform(record)

            expected = DAS_RECORD_RESULTS[i]

            logging.info('Input fields: %s', record.fields)
            logging.info('Got result: %s', result)
            logging.info('Expected result: %s', expected)
            if not result or not expected:
                self.assertIsNone(result)
                self.assertIsNone(expected)
            else:
                self.assertRecursiveAlmostEqual(result.fields, expected)
    def test_nmea(self):
        lines = LINES.copy()
        expected_results = RESULTS.copy()
        nmea_results = NMEA_RESULTS.copy()

        # Use port wind speed, output in m/s
        tw = TrueWindsTransform(data_id='truw',
                                course_fields='S330CourseTrue',
                                speed_fields='S330Speed',
                                heading_fields='S330HeadingTrue',
                                wind_dir_fields='MwxPortRelWindDir',
                                wind_speed_fields='MwxPortRelWindSpeed',
                                convert_speed_factor=0.5144,
                                output_nmea=True)
        parse = ParseNMEATransform()

        while lines:
            record = parse.transform(lines.pop(0))
            result = tw.transform(record)
            nmea_expected = nmea_results.pop(0)
            self.assertEqual(result, nmea_expected)

            # Now check that parsing into a DASRecord works as expected
            das_result = parse.transform(result)
            expected = expected_results.pop(0)
            if das_result is None:
                self.assertEqual(das_result, expected)
            else:
                das_fields = das_result.fields
                exp_fields = expected['fields']
                self.assertAlmostEqual(das_fields['TrueWindDir'],
                                       exp_fields['TrueWindDir'],
                                       delta=0.001)
                self.assertAlmostEqual(das_fields['TrueWindSpeed'],
                                       exp_fields['TrueWindSpeed'],
                                       delta=0.001)
                self.assertAlmostEqual(das_fields['ApparentWindDir'],
                                       exp_fields['ApparentWindDir'],
                                       delta=0.001)
        return
    def test_default(self):
        lines = LINES.copy()
        expected_results = RESULTS.copy()

        # Use port wind speed, output in m/s
        tw = TrueWindsTransform(course_field='S330CourseTrue',
                                speed_field='S330Speed',
                                heading_field='S330HeadingTrue',
                                wind_dir_field='MwxPortRelWindDir',
                                update_on_fields=['MwxPortRelWindDir'],
                                wind_speed_field='MwxPortRelWindSpeed',
                                true_dir_name='PortTrueWindDir',
                                true_speed_name='PortTrueWindSpeed',
                                apparent_dir_name='PortApparentWindDir',
                                convert_speed_factor=0.5144)
        parse = ParseNMEATransform()

        value_dict = {}
        timestamp_dict = {}

        while lines:
            record = parse.transform(lines.pop(0))

            result_list = tw.transform(record)
            self.assertEqual(type(result_list), list)
            result = result_list[0] if len(result_list) else None

            expected = expected_results.pop(0)
            logging.debug('Got result: %s', result)
            logging.debug('Expected result: %s\n', expected)

            if not result or not expected:
                self.assertIsNone(result)
                self.assertIsNone(expected)
            else:
                logging.debug('Comparing result:\n%s\nwith expected:\n%s',
                              result.fields, expected)
                self.assertRecursiveAlmostEqual(result.fields, expected)
Exemple #12
0
    def test_no_timestamps(self):
        lines = LINES.copy()
        expected_results = NO_TIMESTAMP_RESULTS.copy()

        # Use port wind speed, output in m/s
        tw = TrueWindsTransform(course_field='S330CourseTrue',
                                speed_field='S330Speed',
                                heading_field='S330HeadingTrue',
                                wind_dir_field='MwxPortRelWindDir',
                                update_on_fields=['MwxPortRelWindDir'],
                                wind_speed_field='MwxPortRelWindSpeed',
                                true_dir_name='PortTrueWindDir',
                                true_speed_name='PortTrueWindSpeed',
                                apparent_dir_name='PortApparentWindDir',
                                convert_speed_factor=0.5144)
        parse = ParseNMEATransform()

        value_dict = {}
        timestamp_dict = {}

        while lines:
            record = parse.transform(lines.pop(0))
            for field in record.fields:
                value_dict[field] = record.fields[field]
                timestamp_dict[field] = record.timestamp

            result = tw.transform(value_dict)
            expected = expected_results.pop(0)
            logging.info('Got result: %s', result)
            logging.info('Expected result: %s', expected)

            if not result or not expected:
                self.assertIsNone(result)
                self.assertIsNone(expected)
            else:
                self.assertRecursiveAlmostEqual(result, expected)
    def test_check_format(self):
        f1_name = self.tmpdirname + '/f1'
        f2_name = self.tmpdirname + '/f2'

        # This should be okay
        ComposedWriter(
            transforms=[PrefixTransform('prefix')],
            writers=[TextFileWriter(f1_name),
                     TextFileWriter(f2_name)],
            check_format=True)

        # Should raise an error if formats are not compatible
        with self.assertLogs(logging.getLogger(), logging.ERROR):
            with self.assertRaises(ValueError):
                ComposedWriter(
                    transforms=[ParseNMEATransform()],
                    writers=[TextFileWriter(f1_name),
                             TextFileWriter(f2_name)],
                    check_format=True)
Exemple #14
0
  def test_default(self):
    p = ParseNMEATransform()    
    q = QCFilterTransform(bounds='Grav1ValueMg:22000:23000,Grav1Error::2')

    record = p.transform('grv1 2017-11-04:05:12:21.273413 01:022013 00')
    self.assertIsNone(q.transform(record))

    record = p.transform('grv1 2017-11-04:05:12:21.273413 01:022013 -5')
    self.assertIsNone(q.transform(record))

    record = p.transform('grv1 2017-11-04:05:12:21.273413 01:023013 00')
    self.assertEqual(q.transform(record),
                      'Grav1ValueMg: 23013 > upper bound 23000')

    record = p.transform('grv1 2017-11-04:05:12:21.273413 01:023013 03')

    self.assertEqual(q.transform(record).split(';').sort(),
                     'Grav1ValueMg: 23013 > upper bound 23000; Grav1Error: 3 > upper bound 2'.split(';').sort())
Exemple #15
0
            ##########################
            # Transforms
            if new_args.slice:
                transforms.append(
                    SliceTransform(new_args.slice, all_args.slice_separator))
            if new_args.timestamp:
                transforms.append(TimestampTransform())
            if new_args.prefix:
                transforms.append(PrefixTransform(new_args.prefix))
            if new_args.regex_filter:
                transforms.append(RegexFilterTransform(new_args.regex_filter))
            if new_args.qc_filter:
                transforms.append(QCFilterTransform(new_args.qc_filter))
            if new_args.parse_nmea:
                transforms.append(ParseNMEATransform())

            ##########################
            # Writers
            if new_args.write_file:
                for filename in new_args.write_file.split(','):
                    if filename == '-':
                        filename = None
                    writers.append(TextFileWriter(filename=filename))
            if new_args.write_logfile:
                writers.append(LogfileWriter(filebase=new_args.write_logfile))
            if new_args.write_network:
                for addr in new_args.write_network.split(','):
                    writers.append(NetworkWriter(network=addr))
            if new_args.write_record_screen:
                writers.append(RecordScreenWriter())
Exemple #16
0
            # Transforms
            if new_args.slice:
                transforms.append(
                    SliceTransform(new_args.slice, all_args.slice_separator))
            if new_args.timestamp:
                transforms.append(
                    TimestampTransform(time_format=all_args.time_format))
            if new_args.prefix:
                transforms.append(PrefixTransform(new_args.prefix))
            if new_args.regex_filter:
                transforms.append(RegexFilterTransform(new_args.regex_filter))
            if new_args.qc_filter:
                transforms.append(QCFilterTransform(new_args.qc_filter))
            if new_args.parse_nmea:
                transforms.append(
                    ParseNMEATransform(time_format=all_args.time_format))
            if new_args.aggregate_xml:
                transforms.append(
                    XMLAggregatorTransform(new_args.aggregate_xml))

            ##########################
            # Writers
            if new_args.write_file:
                for filename in new_args.write_file.split(','):
                    if filename == '-':
                        filename = None
                    writers.append(TextFileWriter(filename=filename))
            if new_args.write_logfile:
                writers.append(LogfileWriter(filebase=new_args.write_logfile))
            if new_args.write_network:
                for addr in new_args.write_network.split(','):
Exemple #17
0
                                         all_args.slice_separator))
      if new_args.timestamp:
        transforms.append(TimestampTransform(time_format=all_args.time_format))
      if new_args.prefix:
        transforms.append(PrefixTransform(new_args.prefix))
      if new_args.extract:
        transforms.append(ExtractFieldTransform(new_args.extract))
      if new_args.regex_filter:
        transforms.append(RegexFilterTransform(new_args.regex_filter))
      if new_args.qc_filter:
        transforms.append(QCFilterTransform(new_args.qc_filter))
      if new_args.parse_nmea:
        transforms.append(
          ParseNMEATransform(
            message_path=all_args.parse_nmea_message_path,
            sensor_path=all_args.parse_nmea_sensor_path,
            sensor_model_path=all_args.parse_nmea_sensor_model_path,
            time_format=all_args.time_format)
        )
      if new_args.parse:
        transforms.append(
          ParseTransform(
            definition_path=all_args.parse_definition_path,
            return_json=all_args.parse_to_json,
            return_das_record=all_args.parse_to_das_record)
        )
      if new_args.aggregate_xml:
        transforms.append(XMLAggregatorTransform(new_args.aggregate_xml))

      if new_args.max_min:
        transforms.append(MaxMinTransform())