Exemple #1
0
    def test_axiom_connecive_rescoping(self):

        a = Symbol.Predicate('A', ['x'])
        b = Symbol.Predicate('B', ['y'])

        universal = Quantifier.Universal(['x'], a)
        existential = Quantifier.Existential(['y'], b)

        conjunction = universal & existential
        disjunction = universal | existential

        # Ensure we handle single quantifier case
        self.assertEqual(repr((universal & b).rescope()),
                         '∀(x)[(A(x) & B(y))]')
        self.assertEqual(repr((existential & a).rescope()),
                         '∃(y)[(B(y) & A(x))]')
        self.assertEqual(repr((universal | b).rescope()),
                         '∀(x)[(A(x) | B(y))]')
        self.assertEqual(repr((existential | a).rescope()),
                         '∃(y)[(B(y) | A(x))]')

        # Ensure we catch error condition where lookahead is needed
        self.assertRaises(ValueError, (existential | universal).rescope)

        # Ensure that we can promote Universals when a conjunction lives above us
        top = a & disjunction
        self.assertEqual(repr(disjunction.rescope(top)),
                         '∀(x)[∃(y)[(A(x) | B(y))]]')

        # Ensure that we can promote Existentials when a conjunction lives above us
        top = a | conjunction
        self.assertEqual(repr(conjunction.rescope(top)),
                         '∃(y)[∀(x)[(B(y) & A(x))]]')
Exemple #2
0
    def test_axiom_quantifier_coalesence(self):

        a = Symbol.Predicate('A', ['x'])
        b = Symbol.Predicate('B', ['y'])

        universal = Quantifier.Universal(['x'], a)
        universal_two = Quantifier.Universal(['y'], b)
        existential = Quantifier.Existential(['y'], b)
        existential_two = Quantifier.Existential(['x'], a)

        # Coalescence over conjunction should merge Universals
        conjunction = universal & universal_two & existential & existential_two
        self.assertEqual(repr(conjunction.coalesce()),
                         '(∃(y)[B(y)] & ∃(x)[A(x)] & ∀(x)[(B(x) & A(x))])')

        # Coalescence over disjunction should merge Existentials
        disjunction = universal | universal_two | existential | existential_two
        self.assertEqual(repr(disjunction.coalesce()),
                         '(∀(x)[A(x)] | ∀(y)[B(y)] | ∃(y)[(A(y) | B(y))])')
Exemple #3
0
    def test_axiom_variable_standardize(self):

        a = Symbol.Predicate('A', ['x'])
        b = Symbol.Predicate('B', ['y', 'x'])
        c = Symbol.Predicate('C', ['a','b','c','d','e','f','g','h','i'])

        axi = Axiom.Axiom(Quantifier.Universal(['x'], a | a & a))
        self.assertEqual(repr(axi.standardize_variables()), '∀(z)[(A(z) | (A(z) & A(z)))]')

        axi = Axiom.Axiom(Quantifier.Universal(['x', 'y'], b))
        self.assertEqual(repr(axi.standardize_variables()), '∀(z,y)[B(y,z)]')

        axi = Axiom.Axiom(Quantifier.Existential(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i'], c))
        self.assertEqual(repr(axi.standardize_variables()), '∃(z,y,x,w,v,u,t,s,r)[C(z,y,x,w,v,u,t,s,r)]')
Exemple #4
0
    def test_quantifiers(self):

        alpha = Symbol.Predicate('A', ['x'])
        beta = Symbol.Predicate('B', ['y'])
        delta = Symbol.Predicate('D', ['z'])

        uni = Quantifier.Universal(['x', 'y', 'z'], alpha | beta | delta)
        exi = Quantifier.Existential(['x', 'y', 'z'], alpha & beta & delta)

        self.assertEqual(repr(uni), "∀(x,y,z)[(A(x) | B(y) | D(z))]")
        self.assertEqual(repr(exi), "∃(x,y,z)[(A(x) & B(y) & D(z))]")

        self.assertEqual(repr(~uni), "~∀(x,y,z)[(A(x) | B(y) | D(z))]")
        self.assertEqual(repr(~exi), "~∃(x,y,z)[(A(x) & B(y) & D(z))]")

        self.assertEqual(repr((~uni).push()),
                         "∃(x,y,z)[~(A(x) | B(y) | D(z))]")
        self.assertEqual(repr((~exi).push()),
                         "∀(x,y,z)[~(A(x) & B(y) & D(z))]")
Exemple #5
0
    def test_cnf_quantifier_scoping(self):

        a = Symbol.Predicate('A', ['x'])
        b = Symbol.Predicate('B', ['y'])
        c = Symbol.Predicate('C', ['z'])

        e = Quantifier.Existential(['x'], a)
        u = Quantifier.Universal(['y'], b)

        # Test the effect over an OR
        self.assertEqual('∃(x)[(A(x) | B(y))]', repr((e | b).rescope()))
        self.assertEqual('∀(y)[(B(y) | A(x))]', repr((u | a).rescope()))

        # Test the effect over an AND
        self.assertEqual('∃(x)[(A(x) & B(y))]', repr((e & b).rescope()))
        self.assertEqual('∀(y)[(B(y) & A(x))]', repr((u & a).rescope()))

        # Test with more than two to make sure things aren't dropped
        self.assertEqual('∀(y)[(B(y) & (A(x) | C(z) | B(y)))]',
                         repr((u & (a | c | b)).rescope()))
Exemple #6
0
    def push(self):
        '''
        Push negation inwards and apply to all children
        '''

        # Can be a conjunction or disjunction
        # Can be a single predicate
        # Can be a quantifier

        if isinstance(self.term(), Connective.Conjunction):

            ret = Connective.Disjunction([Negation(x) for x in self.term().get_term()])

        elif isinstance(self.term(), Connective.Disjunction):

            ret = Connective.Conjunction([Negation(x) for x in self.term().get_term()])

        elif isinstance(self.term(), Symbol.Predicate):

            ret = self

        elif isinstance(self.term(), Quantifier.Existential):

            ret = Quantifier.Universal(self.term().variables, Negation(self.term().get_term()))

        elif isinstance(self.term(), Quantifier.Universal):

            ret = Quantifier.Existential(self.term().variables, Negation(self.term().get_term()))

        elif isinstance(self.term(), Negation):

            ret = self.term().term()

        else:

            raise ValueError("Negation onto unknown type!", self.term)

        return copy.deepcopy(ret)
Exemple #7
0
    def test_onf_detection(self):

        alpha = Symbol.Predicate('A', ['x'])
        beta = Symbol.Predicate('B', ['y'])
        delta = Symbol.Predicate('D', ['z'])

        uni = Quantifier.Universal(['x', 'y', 'z'], alpha | beta | delta)
        exi = Quantifier.Existential(['x','y','z'], alpha & beta | delta)

        self.assertEqual(alpha.is_onf(), True)
        self.assertEqual((alpha | beta).is_onf(), True)
        self.assertEqual((alpha & beta).is_onf(), True)
        self.assertEqual((alpha | (beta & delta)).is_onf(), False)
        self.assertEqual((alpha & (beta | delta)).is_onf(), True)
        self.assertEqual((~(alpha | beta)).is_onf(), False)
        self.assertEqual((~(alpha & beta)).is_onf(), False)

        self.assertEqual(uni.is_onf(), True)
        self.assertEqual(exi.is_onf(), False)

        # Note that is_onf() is not a recursive call, it's a top level feature
        # If will actually if you need an ONF axiom then create a Logical.Axiom and to_onf()
        self.assertEqual((alpha & (alpha | (beta & delta)) & delta).is_onf(), False)
Exemple #8
0
def p_existential(p):
    """
    existential : LPAREN EXISTS LPAREN nonlogicals RPAREN axiom RPAREN
    """

    p[0] = Quantifier.Existential(p[4], p[6])