Exemple #1
0
    def with_types(self, arg_id_to_dtype, callables_table):
        name = self.name

        for id in arg_id_to_dtype:
            if not -1 <= id <= 0:
                raise LoopyError(f"'{name}' can take only one argument.")

        if 0 not in arg_id_to_dtype or arg_id_to_dtype[0] is None:
            # the types provided aren't mature enough to specialize the callable
            return self.copy(arg_id_to_dtype=arg_id_to_dtype), callables_table

        dtype = arg_id_to_dtype[0]
        dtype = dtype.numpy_dtype

        if dtype.kind in ("u", "i"):
            # ints and unsigned casted to float32
            dtype = np.float32
        elif dtype.kind == "c":
            raise LoopyTypeError(f"{name} does not support type {dtype}")

        typed_callable = self.copy(name_in_target=name,
                                   arg_id_to_dtype={
                                       0: NumpyType(dtype),
                                       -1: NumpyType(dtype)
                                   })

        return typed_callable, callables_table
Exemple #2
0
def c_math_mangler(target, name, arg_dtypes, modify_name=True):
    # Function mangler for math functions defined in C standard
    # Convert abs, min, max to fabs, fmin, fmax.
    # If modify_name is set to True, function names are modified according to
    # floating point types of the arguments (e.g. cos(double), cosf(float))
    # This should be set to True for C and Cuda, False for OpenCL
    if not isinstance(name, str):
        return None

    if name in ["abs", "min", "max"]:
        name = "f" + name

    # unitary functions
    if (name in ["fabs", "acos", "asin", "atan", "cos", "cosh", "sin", "sinh",
                 "tanh", "exp", "log", "log10", "sqrt", "ceil", "floor"]
            and len(arg_dtypes) == 1
            and arg_dtypes[0].numpy_dtype.kind == "f"):

        dtype = arg_dtypes[0].numpy_dtype

        if modify_name:
            if dtype == np.float64:
                pass  # fabs
            elif dtype == np.float32:
                name = name + "f"  # fabsf
            elif dtype == np.float128:  # pylint:disable=no-member
                name = name + "l"  # fabsl
            else:
                raise LoopyTypeError("%s does not support type %s" % (name, dtype))

        return CallMangleInfo(
                target_name=name,
                result_dtypes=arg_dtypes,
                arg_dtypes=arg_dtypes)

    # binary functions
    if (name in ["fmax", "fmin", "copysign"]
            and len(arg_dtypes) == 2):

        dtype = np.find_common_type(
            [], [dtype.numpy_dtype for dtype in arg_dtypes])

        if dtype.kind == "c":
            raise LoopyTypeError("%s does not support complex numbers")

        elif dtype.kind == "f":
            if modify_name:
                if dtype == np.float64:
                    pass  # fmin
                elif dtype == np.float32:
                    name = name + "f"  # fminf
                elif dtype == np.float128:  # pylint:disable=no-member
                    name = name + "l"  # fminl
                else:
                    raise LoopyTypeError("%s does not support type %s"
                                         % (name, dtype))

            result_dtype = NumpyType(dtype)
            return CallMangleInfo(
                    target_name=name,
                    result_dtypes=(result_dtype,),
                    arg_dtypes=2*(result_dtype,))

    return None
Exemple #3
0
    def cuda_with_types(self, arg_id_to_dtype, callables_table):

        name = self.name

        if name in _CUDA_SPECIFIC_FUNCTIONS:
            num_args = _CUDA_SPECIFIC_FUNCTIONS[name]

            # {{{ sanity checks

            for id, dtype in arg_id_to_dtype.items():
                if not -1 <= id < num_args:
                    raise LoopyError("%s can take only %d arguments." %
                                     (name, num_args))

                if dtype is not None and dtype.kind == "c":
                    raise LoopyTypeError(
                        f"'{name}' does not support complex arguments.")

            # }}}

            for i in range(num_args):
                if i not in arg_id_to_dtype or arg_id_to_dtype[i] is None:
                    # the types provided aren't mature enough to specialize the
                    # callable
                    return (self.copy(arg_id_to_dtype=arg_id_to_dtype),
                            callables_table)

            dtype = np.find_common_type([], [
                dtype.numpy_dtype
                for id, dtype in arg_id_to_dtype.items() if id >= 0
            ])

            updated_arg_id_to_dtype = {
                id: NumpyType(dtype)
                for id in range(-1, num_args)
            }

            return (self.copy(name_in_target=name,
                              arg_id_to_dtype=updated_arg_id_to_dtype),
                    callables_table)

        if name == "dot":
            # CUDA dot function:
            # Performs dot product. Input types: vector and return type: scalar.
            for i in range(2):
                if i not in arg_id_to_dtype or arg_id_to_dtype[i] is None:
                    # the types provided aren't mature enough to specialize the
                    # callable
                    return (self.copy(arg_id_to_dtype=arg_id_to_dtype),
                            callables_table)

            input_dtype = arg_id_to_dtype[0]

            scalar_dtype, offset, field_name = input_dtype.fields["x"]
            return_dtype = scalar_dtype
            return self.copy(arg_id_to_dtype={
                0: input_dtype,
                1: input_dtype,
                -1: return_dtype
            })

        return (self.copy(arg_id_to_dtype=arg_id_to_dtype), callables_table)
Exemple #4
0
def opencl_function_mangler(kernel, name, arg_dtypes):
    if not isinstance(name, str):
        return None

    # OpenCL has min(), max() for integer types
    if name in ["max", "min"] and len(arg_dtypes) == 2:
        dtype = np.find_common_type(
            [], [dtype.numpy_dtype for dtype in arg_dtypes])

        if dtype.kind == "i":
            result_dtype = NumpyType(dtype)
            return CallMangleInfo(target_name=name,
                                  result_dtypes=(result_dtype, ),
                                  arg_dtypes=2 * (result_dtype, ))

    if name == "pow" and len(arg_dtypes) == 2:
        dtype = np.find_common_type(
            [], [dtype.numpy_dtype for dtype in arg_dtypes])
        if dtype == np.float64:
            name = "powf64"
        elif dtype == np.float32:
            name = "powf32"
        else:
            raise LoopyTypeError(f"'pow' does not support type {dtype}.")

        result_dtype = NumpyType(dtype)
        return CallMangleInfo(target_name=name,
                              result_dtypes=(result_dtype, ),
                              arg_dtypes=2 * (result_dtype, ))

    if name == "dot":
        scalar_dtype, offset, field_name = arg_dtypes[0].numpy_dtype.fields[
            "s0"]
        return CallMangleInfo(target_name=name,
                              result_dtypes=(NumpyType(scalar_dtype), ),
                              arg_dtypes=(arg_dtypes[0], ) * 2)

    if name in _CL_SIMPLE_MULTI_ARG_FUNCTIONS:
        num_args = _CL_SIMPLE_MULTI_ARG_FUNCTIONS[name]
        if len(arg_dtypes) != num_args:
            raise LoopyError("%s takes %d arguments (%d received)" %
                             (name, num_args, len(arg_dtypes)))

        dtype = np.find_common_type(
            [], [dtype.numpy_dtype for dtype in arg_dtypes])

        if dtype.kind == "c":
            raise LoopyError("%s does not support complex numbers" % name)

        result_dtype = NumpyType(dtype)
        return CallMangleInfo(target_name=name,
                              result_dtypes=(result_dtype, ),
                              arg_dtypes=(result_dtype, ) * num_args)

    if name in VECTOR_LITERAL_FUNCS:
        base_tp_name, dtype, count = VECTOR_LITERAL_FUNCS[name]

        if count != len(arg_dtypes):
            return None

        return CallMangleInfo(target_name="(%s%d) " % (base_tp_name, count),
                              result_dtypes=(kernel.target.vector_dtype(
                                  NumpyType(dtype), count), ),
                              arg_dtypes=(NumpyType(dtype), ) * count)

    return None
Exemple #5
0
    def with_types(self, arg_id_to_dtype, callables_table):
        name = self.name

        # unary functions
        if name in ["fabs", "acos", "asin", "atan", "cos", "cosh", "sin", "sinh",
                    "tan", "tanh", "exp", "log", "log10", "sqrt", "ceil", "floor",
                    "erf", "erfc"]:

            for id in arg_id_to_dtype:
                if not -1 <= id <= 0:
                    raise LoopyError(f"'{name}' can take only one argument.")

            if 0 not in arg_id_to_dtype or arg_id_to_dtype[0] is None:
                # the types provided aren't mature enough to specialize the
                # callable
                return (
                        self.copy(arg_id_to_dtype=arg_id_to_dtype),
                        callables_table)

            dtype = arg_id_to_dtype[0]
            dtype = dtype.numpy_dtype

            if dtype.kind in ("u", "i"):
                # ints and unsigned casted to float32
                dtype = np.float32
            elif dtype.kind == "c":
                raise LoopyTypeError(f"{name} does not support type {dtype}")

            return (
                    self.copy(name_in_target=name,
                        arg_id_to_dtype={0: NumpyType(dtype), -1:
                            NumpyType(dtype)}),
                    callables_table)
        # binary functions
        elif name in ["fmax", "fmin", "atan2", "copysign"]:

            for id in arg_id_to_dtype:
                if not -1 <= id <= 1:
                    #FIXME: Do we need to raise here?:
                    #   The pattern we generally follow is that if we don't find
                    #   a function, then we just return None
                    raise LoopyError("%s can take only two arguments." % name)

            if 0 not in arg_id_to_dtype or 1 not in arg_id_to_dtype or (
                    arg_id_to_dtype[0] is None or arg_id_to_dtype[1] is None):
                # the types provided aren't mature enough to specialize the
                # callable
                return (
                        self.copy(arg_id_to_dtype=arg_id_to_dtype),
                        callables_table)

            dtype = np.find_common_type(
                [], [dtype.numpy_dtype for id, dtype in arg_id_to_dtype.items()
                     if id >= 0])

            if dtype.kind == "c":
                raise LoopyTypeError(f"'{name}' does not support complex numbers")

            dtype = NumpyType(dtype)
            return (
                    self.copy(name_in_target=name,
                        arg_id_to_dtype={-1: dtype, 0: dtype, 1: dtype}),
                    callables_table)

        elif name in ["max", "min"]:
            for id in arg_id_to_dtype:
                if not -1 <= id <= 1:
                    raise LoopyError("%s can take only 2 arguments." % name)
            if 0 not in arg_id_to_dtype or 1 not in arg_id_to_dtype:
                return (
                        self.copy(arg_id_to_dtype=arg_id_to_dtype),
                        callables_table)
            common_dtype = np.find_common_type(
                    [], [dtype.numpy_dtype for id, dtype in arg_id_to_dtype.items()
                        if (id >= 0 and dtype is not None)])

            if common_dtype.kind in ["u", "i", "f"]:
                if common_dtype.kind == "f":
                    name = "f"+name

                dtype = NumpyType(common_dtype)
                return (
                        self.copy(name_in_target=name,
                            arg_id_to_dtype={-1: dtype, 0: dtype, 1: dtype}),
                        callables_table)
            else:
                # Unsupported type.
                raise LoopyError("%s function not supported for the types %s" %
                        (name, common_dtype))

        elif name == "dot":
            for id in arg_id_to_dtype:
                if not -1 <= id <= 1:
                    raise LoopyError(f"'{name}' can take only 2 arguments.")

            if 0 not in arg_id_to_dtype or 1 not in arg_id_to_dtype or (
                    arg_id_to_dtype[0] is None or arg_id_to_dtype[1] is None):
                # the types provided aren't mature enough to specialize the
                # callable
                return (
                        self.copy(arg_id_to_dtype=arg_id_to_dtype),
                        callables_table)

            dtype = arg_id_to_dtype[0]
            scalar_dtype, offset, field_name = dtype.numpy_dtype.fields["s0"]
            return (
                    self.copy(name_in_target=name, arg_id_to_dtype={-1:
                        NumpyType(scalar_dtype), 0: dtype, 1: dtype}),
                    callables_table)

        elif name == "pow":
            for id in arg_id_to_dtype:
                if not -1 <= id <= 1:
                    raise LoopyError(f"'{name}' can take only 2 arguments.")

            common_dtype = np.find_common_type(
                    [], [dtype.numpy_dtype for id, dtype in arg_id_to_dtype.items()
                        if (id >= 0 and dtype is not None)])

            if common_dtype == np.float64:
                name = "powf64"
            elif common_dtype == np.float32:
                name = "powf32"
            else:
                raise LoopyTypeError(f"'pow' does not support type {dtype}.")

            result_dtype = NumpyType(common_dtype)

            return (
                    self.copy(name_in_target=name,
                              arg_id_to_dtype={-1: result_dtype,
                                               0: common_dtype, 1: common_dtype}),
                    callables_table)

        elif name in _CL_SIMPLE_MULTI_ARG_FUNCTIONS:
            num_args = _CL_SIMPLE_MULTI_ARG_FUNCTIONS[name]
            for id in arg_id_to_dtype:
                if not -1 <= id < num_args:
                    raise LoopyError("%s can take only %d arguments." % (name,
                            num_args))

            for i in range(num_args):
                if i not in arg_id_to_dtype or arg_id_to_dtype[i] is None:
                    # the types provided aren't mature enough to specialize the
                    # callable
                    return (
                            self.copy(arg_id_to_dtype=arg_id_to_dtype),
                            callables_table)

            dtype = np.find_common_type(
                    [], [dtype.numpy_dtype for id, dtype in
                        arg_id_to_dtype.items() if id >= 0])

            if dtype.kind == "c":
                raise LoopyError("%s does not support complex numbers"
                        % name)

            updated_arg_id_to_dtype = {id: NumpyType(dtype) for id in range(-1,
                num_args)}

            return (
                    self.copy(name_in_target=name,
                        arg_id_to_dtype=updated_arg_id_to_dtype),
                    callables_table)

        elif name in VECTOR_LITERAL_FUNCS:
            base_tp_name, dtype, count = VECTOR_LITERAL_FUNCS[name]

            for id in arg_id_to_dtype:
                if not -1 <= id < count:
                    raise LoopyError("%s can take only %d arguments." % (name,
                            num_args))

            for i in range(count):
                if i not in arg_id_to_dtype or arg_id_to_dtype[i] is None:
                    # the types provided aren't mature enough to specialize the
                    # callable
                    return (
                            self.copy(arg_id_to_dtype=arg_id_to_dtype),
                            callables_table)

            updated_arg_id_to_dtype = {id: NumpyType(dtype) for id in
                    range(count)}
            updated_arg_id_to_dtype[-1] = OpenCLTarget().vector_dtype(
                        NumpyType(dtype), count)

            return (
                    self.copy(name_in_target="(%s%d) " % (base_tp_name, count),
                        arg_id_to_dtype=updated_arg_id_to_dtype),
                    callables_table)

        # does not satisfy any of the conditions needed for specialization.
        # hence just returning a copy of the callable.
        return (
                self.copy(arg_id_to_dtype=arg_id_to_dtype),
                callables_table)
Exemple #6
0
    def with_types(self, arg_id_to_dtype, callables_table):

        name = self.name

        for id in arg_id_to_dtype:
            # since all the below functions are single arg.
            if not -1 <= id <= 0:
                raise LoopyError(f"{name} can only take one argument")

        if 0 not in arg_id_to_dtype or arg_id_to_dtype[0] is None:
            # the types provided aren't mature enough to specialize the
            # callable
            return (self.copy(arg_id_to_dtype=arg_id_to_dtype),
                    callables_table)

        dtype = arg_id_to_dtype[0]

        if name in ["real", "imag", "abs"]:
            if dtype.is_complex():
                if dtype.numpy_dtype == np.complex64:
                    tpname = "cfloat"
                elif dtype.numpy_dtype == np.complex128:
                    tpname = "cdouble"
                else:
                    raise LoopyTypeError(f"unexpected complex type '{dtype}'")

                return (self.copy(
                    name_in_target=f"{tpname}_{name}",
                    arg_id_to_dtype={
                        0: dtype,
                        -1: NumpyType(np.dtype(dtype.numpy_dtype.type(0).real))
                    }), callables_table)

        if name in ["real", "imag"]:
            if not dtype.is_complex():
                tpname = dtype.numpy_dtype.type.__name__
                return (self.copy(name_in_target=f"lpy_{name}_{tpname}",
                                  arg_id_to_dtype={
                                      0: dtype,
                                      -1: dtype
                                  }), callables_table)

        if name in [
                "sqrt", "exp", "log", "sin", "cos", "tan", "sinh", "cosh",
                "tanh", "conj", "abs"
        ]:
            if dtype.is_complex():
                # function parameters are complex.
                if dtype.numpy_dtype == np.complex64:
                    tpname = "cfloat"
                elif dtype.numpy_dtype == np.complex128:
                    tpname = "cdouble"
                else:
                    raise LoopyTypeError("unexpected complex type '%s'" %
                                         dtype)

                return (self.copy(name_in_target=f"{tpname}_{name}",
                                  arg_id_to_dtype={
                                      0: dtype,
                                      -1: dtype
                                  }), callables_table)
            else:
                # function calls for floating-point parameters.
                numpy_dtype = dtype.numpy_dtype
                if numpy_dtype.kind in ("u", "i"):
                    dtype = NumpyType(np.float32)
                if name == "abs":
                    name = "fabs"
                return (self.copy(name_in_target=name,
                                  arg_id_to_dtype={
                                      0: dtype,
                                      -1: dtype
                                  }), callables_table)

        return (self.copy(arg_id_to_dtype=arg_id_to_dtype), callables_table)
Exemple #7
0
    def with_types(self, arg_id_to_dtype, callables_table):
        name = self.name

        # {{{ (abs|max|min) -> (fabs|fmax|fmin)

        if name in ["abs", "min", "max"]:
            dtype = np.find_common_type(
                [], [dtype.numpy_dtype for dtype in arg_id_to_dtype.values()])
            if dtype.kind == "f":
                name = "f" + name

        # }}}

        # unary functions
        if name in [
                "fabs", "acos", "asin", "atan", "cos", "cosh", "sin", "sinh",
                "tan", "tanh", "exp", "log", "log10", "sqrt", "ceil", "floor",
                "erf", "erfc", "abs", "real", "imag", "conj"
        ]:

            for id in arg_id_to_dtype:
                if not -1 <= id <= 0:
                    raise LoopyError(f"'{name}' can take only one argument.")

            if 0 not in arg_id_to_dtype or arg_id_to_dtype[0] is None:
                # the types provided aren't mature enough to specialize the
                # callable
                return (self.copy(arg_id_to_dtype=arg_id_to_dtype),
                        callables_table)

            dtype = arg_id_to_dtype[0].numpy_dtype
            real_dtype = np.empty(0, dtype=dtype).real.dtype

            if dtype.kind in ("u", "i"):
                # ints and unsigned casted to float32
                dtype = np.float32

            # for CUDA, C Targets the name must be modified
            if real_dtype == np.float64:
                pass  # fabs
            elif real_dtype == np.float32:
                name = name + "f"  # fabsf
            elif (hasattr(np, "float128") and real_dtype == np.float128):  # pylint:disable=no-member
                name = name + "l"  # fabsl
            else:
                raise LoopyTypeError("{} does not support type {}".format(
                    name, dtype))

            if name in ["abs", "real", "imag"]:
                dtype = real_dtype

            if dtype.kind == "c" or name in ["real", "imag", "abs"]:
                if name != "conj":
                    name = "c" + name

            return (self.copy(name_in_target=name,
                              arg_id_to_dtype={
                                  0: NumpyType(dtype),
                                  -1: NumpyType(dtype)
                              }), callables_table)

        # binary functions
        elif name in ["fmax", "fmin", "pow", "atan2", "copysign"]:

            for id in arg_id_to_dtype:
                if not -1 <= id <= 1:
                    raise LoopyError("%s can take only two arguments." % name)

            if 0 not in arg_id_to_dtype or 1 not in arg_id_to_dtype or (
                    arg_id_to_dtype[0] is None or arg_id_to_dtype[1] is None):
                # the types provided aren't mature enough to specialize the
                # callable
                return (self.copy(arg_id_to_dtype=arg_id_to_dtype),
                        callables_table)

            dtype = np.find_common_type([], [
                dtype.numpy_dtype
                for id, dtype in arg_id_to_dtype.items() if id >= 0
            ])
            real_dtype = np.empty(0, dtype=dtype).real.dtype

            if name in ["fmax", "fmin", "copysign"] and dtype.kind == "c":
                raise LoopyTypeError(
                    f"{name} does not support complex numbers")

            elif real_dtype.kind in "fc":
                if real_dtype == np.float64:
                    pass  # fmin
                elif real_dtype == np.float32:
                    name = name + "f"  # fminf
                elif (hasattr(np, "float128") and real_dtype == np.float128):  # pylint:disable=no-member
                    name = name + "l"  # fminl
                else:
                    raise LoopyTypeError("%s does not support type %s" %
                                         (name, dtype))
            if dtype.kind == "c":
                name = "c" + name  # cpow
            dtype = NumpyType(dtype)
            return (self.copy(name_in_target=name,
                              arg_id_to_dtype={
                                  -1: dtype,
                                  0: dtype,
                                  1: dtype
                              }), callables_table)
        elif name in ["max", "min"]:

            for id in arg_id_to_dtype:
                if not -1 <= id <= 1:
                    raise LoopyError("%s can take only two arguments." % name)

            if 0 not in arg_id_to_dtype or 1 not in arg_id_to_dtype or (
                    arg_id_to_dtype[0] is None or arg_id_to_dtype[1] is None):
                # the types provided aren't resolved enough to specialize the
                # callable
                return (self.copy(arg_id_to_dtype=arg_id_to_dtype),
                        callables_table)

            dtype = np.find_common_type([], [
                dtype.numpy_dtype
                for id, dtype in arg_id_to_dtype.items() if id >= 0
            ])
            if dtype.kind not in "iu":
                # only support integers for now to avoid having to deal with NaNs
                raise LoopyError(
                    f"{name} does not support '{dtype}' arguments.")

            return (self.copy(name_in_target=f"lpy_{name}_{dtype.name}",
                              arg_id_to_dtype={
                                  -1: NumpyType(dtype),
                                  0: NumpyType(dtype),
                                  1: NumpyType(dtype)
                              }), callables_table)
        elif name == "isnan":
            for id in arg_id_to_dtype:
                if not -1 <= id <= 0:
                    raise LoopyError(f"'{name}' can take only one argument.")

            if 0 not in arg_id_to_dtype or arg_id_to_dtype[0] is None:
                # the types provided aren't mature enough to specialize the
                # callable
                return (self.copy(arg_id_to_dtype=arg_id_to_dtype),
                        callables_table)

            dtype = arg_id_to_dtype[0].numpy_dtype

            if dtype.kind == "f":
                pass
            elif dtype == np.int32:
                name = "isnani32"
            elif dtype == np.int64:
                name = "isnani64"
            else:
                raise LoopyTypeError(f"'isnan' does not support type {dtype}.")

            return (self.copy(name_in_target=name,
                              arg_id_to_dtype={
                                  0: NumpyType(dtype),
                                  -1: NumpyType(np.int32)
                              }), callables_table)