Exemple #1
0
    def __init__(self, codegen_state, type_inf_mapper=None):
        self.kernel = codegen_state.kernel
        self.codegen_state = codegen_state

        if type_inf_mapper is None:
            type_inf_mapper = TypeInferenceMapper(self.kernel)
        self.type_inf_mapper = type_inf_mapper
Exemple #2
0
    def __init__(self, codegen_state, fortran_abi=False, type_inf_mapper=None):
        self.kernel = codegen_state.kernel
        self.codegen_state = codegen_state

        if type_inf_mapper is None:
            type_inf_mapper = TypeInferenceMapper(self.kernel)
        self.type_inf_mapper = type_inf_mapper

        self.allow_complex = codegen_state.allow_complex

        self.fortran_abi = fortran_abi
Exemple #3
0
def realize_reduction(kernel, insn_id_filter=None, unknown_types_ok=True):
    """Rewrites reductions into their imperative form. With *insn_id_filter*
    specified, operate only on the instruction with an instruction id matching
    *insn_id_filter*.

    If *insn_id_filter* is given, only the outermost level of reductions will be
    expanded, inner reductions will be left alone (because they end up in a new
    instruction with a different ID, which doesn't match the filter).

    If *insn_id_filter* is not given, all reductions in all instructions will
    be realized.
    """

    logger.debug("%s: realize reduction" % kernel.name)

    new_insns = []
    new_iname_tags = {}

    insn_id_gen = kernel.get_instruction_id_generator()

    var_name_gen = kernel.get_var_name_generator()
    new_temporary_variables = kernel.temporary_variables.copy()

    from loopy.type_inference import TypeInferenceMapper
    type_inf_mapper = TypeInferenceMapper(kernel)

    # {{{ sequential

    def map_reduction_seq(expr, rec, nresults, arg_dtype,
            reduction_dtypes):
        outer_insn_inames = temp_kernel.insn_inames(insn)

        from pymbolic import var
        acc_var_names = [
                var_name_gen("acc_"+"_".join(expr.inames))
                for i in range(nresults)]
        acc_vars = tuple(var(n) for n in acc_var_names)

        from loopy.kernel.data import TemporaryVariable, temp_var_scope

        for name, dtype in zip(acc_var_names, reduction_dtypes):
            new_temporary_variables[name] = TemporaryVariable(
                    name=name,
                    shape=(),
                    dtype=dtype,
                    scope=temp_var_scope.PRIVATE)

        init_id = insn_id_gen(
                "%s_%s_init" % (insn.id, "_".join(expr.inames)))

        init_insn = make_assignment(
                id=init_id,
                assignees=acc_vars,
                within_inames=outer_insn_inames - frozenset(expr.inames),
                within_inames_is_final=insn.within_inames_is_final,
                depends_on=frozenset(),
                expression=expr.operation.neutral_element(arg_dtype, expr.inames))

        generated_insns.append(init_insn)

        update_id = insn_id_gen(
                based_on="%s_%s_update" % (insn.id, "_".join(expr.inames)))

        update_insn_iname_deps = temp_kernel.insn_inames(insn) | set(expr.inames)
        if insn.within_inames_is_final:
            update_insn_iname_deps = insn.within_inames | set(expr.inames)

        reduction_insn = make_assignment(
                id=update_id,
                assignees=acc_vars,
                expression=expr.operation(
                    arg_dtype,
                    acc_vars if len(acc_vars) > 1 else acc_vars[0],
                    expr.expr, expr.inames),
                depends_on=frozenset([init_insn.id]) | insn.depends_on,
                within_inames=update_insn_iname_deps,
                within_inames_is_final=insn.within_inames_is_final)

        generated_insns.append(reduction_insn)

        new_insn_add_depends_on.add(reduction_insn.id)

        if nresults == 1:
            assert len(acc_vars) == 1
            return acc_vars[0]
        else:
            return acc_vars

    # }}}

    # {{{ local-parallel

    def _get_int_iname_size(iname):
        from loopy.isl_helpers import static_max_of_pw_aff
        from loopy.symbolic import pw_aff_to_expr
        size = pw_aff_to_expr(
                static_max_of_pw_aff(
                    kernel.get_iname_bounds(iname).size,
                    constants_only=True))
        assert isinstance(size, six.integer_types)
        return size

    def _make_slab_set(iname, size):
        v = isl.make_zero_and_vars([iname])
        bs, = (
                v[0].le_set(v[iname])
                &
                v[iname].lt_set(v[0] + size)).get_basic_sets()
        return bs

    def map_reduction_local(expr, rec, nresults, arg_dtype,
            reduction_dtypes):
        red_iname, = expr.inames

        size = _get_int_iname_size(red_iname)

        outer_insn_inames = temp_kernel.insn_inames(insn)

        from loopy.kernel.data import LocalIndexTagBase
        outer_local_inames = tuple(
                oiname
                for oiname in outer_insn_inames
                if isinstance(
                    kernel.iname_to_tag.get(oiname),
                    LocalIndexTagBase))

        from pymbolic import var
        outer_local_iname_vars = tuple(
                var(oiname) for oiname in outer_local_inames)

        outer_local_iname_sizes = tuple(
                _get_int_iname_size(oiname)
                for oiname in outer_local_inames)

        # {{{ add separate iname to carry out the reduction

        # Doing this sheds any odd conditionals that may be active
        # on our red_iname.

        base_exec_iname = var_name_gen("red_"+red_iname)
        domains.append(_make_slab_set(base_exec_iname, size))
        new_iname_tags[base_exec_iname] = kernel.iname_to_tag[red_iname]

        # }}}

        neutral_var_names = [
                var_name_gen("neutral_"+red_iname)
                for i in range(nresults)]
        acc_var_names = [
                var_name_gen("acc_"+red_iname)
                for i in range(nresults)]
        acc_vars = tuple(var(n) for n in acc_var_names)

        from loopy.kernel.data import TemporaryVariable, temp_var_scope
        for name, dtype in zip(acc_var_names, reduction_dtypes):
            new_temporary_variables[name] = TemporaryVariable(
                    name=name,
                    shape=outer_local_iname_sizes + (size,),
                    dtype=dtype,
                    scope=temp_var_scope.LOCAL)
        for name, dtype in zip(neutral_var_names, reduction_dtypes):
            new_temporary_variables[name] = TemporaryVariable(
                    name=name,
                    shape=(),
                    dtype=dtype,
                    scope=temp_var_scope.PRIVATE)

        base_iname_deps = outer_insn_inames - frozenset(expr.inames)

        neutral = expr.operation.neutral_element(arg_dtype, expr.inames)

        init_id = insn_id_gen("%s_%s_init" % (insn.id, red_iname))
        init_insn = make_assignment(
                id=init_id,
                assignees=tuple(
                    acc_var[outer_local_iname_vars + (var(base_exec_iname),)]
                    for acc_var in acc_vars),
                expression=neutral,
                within_inames=base_iname_deps | frozenset([base_exec_iname]),
                within_inames_is_final=insn.within_inames_is_final,
                depends_on=frozenset())
        generated_insns.append(init_insn)

        def _strip_if_scalar(c):
            if len(acc_vars) == 1:
                return c[0]
            else:
                return c

        init_neutral_id = insn_id_gen("%s_%s_init_neutral" % (insn.id, red_iname))
        init_neutral_insn = make_assignment(
                id=init_neutral_id,
                assignees=tuple(var(nvn) for nvn in neutral_var_names),
                expression=neutral,
                within_inames=base_iname_deps | frozenset([base_exec_iname]),
                within_inames_is_final=insn.within_inames_is_final,
                depends_on=frozenset())
        generated_insns.append(init_neutral_insn)

        transfer_id = insn_id_gen("%s_%s_transfer" % (insn.id, red_iname))
        transfer_insn = make_assignment(
                id=transfer_id,
                assignees=tuple(
                    acc_var[outer_local_iname_vars + (var(red_iname),)]
                    for acc_var in acc_vars),
                expression=expr.operation(
                    arg_dtype,
                    _strip_if_scalar(tuple(var(nvn) for nvn in neutral_var_names)),
                    expr.expr, expr.inames),
                within_inames=(
                    (outer_insn_inames - frozenset(expr.inames))
                    | frozenset([red_iname])),
                within_inames_is_final=insn.within_inames_is_final,
                depends_on=frozenset([init_id, init_neutral_id]) | insn.depends_on,
                no_sync_with=frozenset([(init_id, "any")]))
        generated_insns.append(transfer_insn)

        cur_size = 1
        while cur_size < size:
            cur_size *= 2

        prev_id = transfer_id
        bound = size

        istage = 0
        while cur_size > 1:

            new_size = cur_size // 2
            assert new_size * 2 == cur_size

            stage_exec_iname = var_name_gen("red_%s_s%d" % (red_iname, istage))
            domains.append(_make_slab_set(stage_exec_iname, bound-new_size))
            new_iname_tags[stage_exec_iname] = kernel.iname_to_tag[red_iname]

            stage_id = insn_id_gen("red_%s_stage_%d" % (red_iname, istage))
            stage_insn = make_assignment(
                    id=stage_id,
                    assignees=tuple(
                        acc_var[outer_local_iname_vars + (var(stage_exec_iname),)]
                        for acc_var in acc_vars),
                    expression=expr.operation(
                        arg_dtype,
                        _strip_if_scalar(tuple(
                            acc_var[
                                outer_local_iname_vars + (var(stage_exec_iname),)]
                            for acc_var in acc_vars)),
                        _strip_if_scalar(tuple(
                            acc_var[
                                outer_local_iname_vars + (
                                    var(stage_exec_iname) + new_size,)]
                            for acc_var in acc_vars)),
                        expr.inames),
                    within_inames=(
                        base_iname_deps | frozenset([stage_exec_iname])),
                    within_inames_is_final=insn.within_inames_is_final,
                    depends_on=frozenset([prev_id]),
                    )

            generated_insns.append(stage_insn)
            prev_id = stage_id

            cur_size = new_size
            bound = cur_size
            istage += 1

        new_insn_add_depends_on.add(prev_id)
        new_insn_add_no_sync_with.add((prev_id, "any"))
        new_insn_add_within_inames.add(base_exec_iname or stage_exec_iname)

        if nresults == 1:
            assert len(acc_vars) == 1
            return acc_vars[0][outer_local_iname_vars + (0,)]
        else:
            return [acc_var[outer_local_iname_vars + (0,)] for acc_var in acc_vars]
    # }}}

    # {{{ seq/par dispatch

    def map_reduction(expr, rec, nresults=1):
        # Only expand one level of reduction at a time, going from outermost to
        # innermost. Otherwise we get the (iname + insn) dependencies wrong.

        try:
            arg_dtype = type_inf_mapper(expr.expr)
        except DependencyTypeInferenceFailure:
            if unknown_types_ok:
                arg_dtype = lp.auto

                reduction_dtypes = (lp.auto,)*nresults

            else:
                raise LoopyError("failed to determine type of accumulator for "
                        "reduction '%s'" % expr)
        else:
            arg_dtype = arg_dtype.with_target(kernel.target)

            reduction_dtypes = expr.operation.result_dtypes(
                        kernel, arg_dtype, expr.inames)
            reduction_dtypes = tuple(
                    dt.with_target(kernel.target) for dt in reduction_dtypes)

        outer_insn_inames = temp_kernel.insn_inames(insn)
        bad_inames = frozenset(expr.inames) & outer_insn_inames
        if bad_inames:
            raise LoopyError("reduction used within loop(s) that it was "
                    "supposed to reduce over: " + ", ".join(bad_inames))

        n_sequential = 0
        n_local_par = 0

        from loopy.kernel.data import (
                LocalIndexTagBase, UnrolledIlpTag, UnrollTag, VectorizeTag,
                ParallelTag)
        for iname in expr.inames:
            iname_tag = kernel.iname_to_tag.get(iname)

            if isinstance(iname_tag, (UnrollTag, UnrolledIlpTag)):
                # These are nominally parallel, but we can live with
                # them as sequential.
                n_sequential += 1

            elif isinstance(iname_tag, LocalIndexTagBase):
                n_local_par += 1

            elif isinstance(iname_tag, (ParallelTag, VectorizeTag)):
                raise LoopyError("the only form of parallelism supported "
                        "by reductions is 'local'--found iname '%s' "
                        "tagged '%s'"
                        % (iname, type(iname_tag).__name__))

            else:
                n_sequential += 1

        if n_local_par and n_sequential:
            raise LoopyError("Reduction over '%s' contains both parallel and "
                    "sequential inames. It must be split "
                    "(using split_reduction_{in,out}ward) "
                    "before code generation."
                    % ", ".join(expr.inames))

        if n_local_par > 1:
            raise LoopyError("Reduction over '%s' contains more than"
                    "one parallel iname. It must be split "
                    "(using split_reduction_{in,out}ward) "
                    "before code generation."
                    % ", ".join(expr.inames))

        if n_sequential:
            assert n_local_par == 0
            return map_reduction_seq(expr, rec, nresults, arg_dtype,
                    reduction_dtypes)
        elif n_local_par:
            return map_reduction_local(expr, rec, nresults, arg_dtype,
                    reduction_dtypes)
        else:
            from loopy.diagnostic import warn_with_kernel
            warn_with_kernel(kernel, "empty_reduction",
                    "Empty reduction found (no inames to reduce over). "
                    "Eliminating.")

            return expr.expr

    # }}}

    from loopy.symbolic import ReductionCallbackMapper
    cb_mapper = ReductionCallbackMapper(map_reduction)

    insn_queue = kernel.instructions[:]
    insn_id_replacements = {}
    domains = kernel.domains[:]

    temp_kernel = kernel

    import loopy as lp
    while insn_queue:
        new_insn_add_depends_on = set()
        new_insn_add_no_sync_with = set()
        new_insn_add_within_inames = set()

        generated_insns = []

        insn = insn_queue.pop(0)

        if insn_id_filter is not None and insn.id != insn_id_filter \
                or not isinstance(insn, lp.MultiAssignmentBase):
            new_insns.append(insn)
            continue

        nresults = len(insn.assignees)

        # Run reduction expansion.
        from loopy.symbolic import Reduction
        if isinstance(insn.expression, Reduction) and nresults > 1:
            new_expressions = cb_mapper(insn.expression, nresults=nresults)
        else:
            new_expressions = (cb_mapper(insn.expression),)

        if generated_insns:
            # An expansion happened, so insert the generated stuff plus
            # ourselves back into the queue.

            kwargs = insn.get_copy_kwargs(
                    depends_on=insn.depends_on
                    | frozenset(new_insn_add_depends_on),
                    no_sync_with=insn.no_sync_with
                    | frozenset(new_insn_add_no_sync_with),
                    within_inames=(
                        temp_kernel.insn_inames(insn)
                        | new_insn_add_within_inames))

            kwargs.pop("id")
            kwargs.pop("expression")
            kwargs.pop("assignee", None)
            kwargs.pop("assignees", None)
            kwargs.pop("temp_var_type", None)
            kwargs.pop("temp_var_types", None)

            if isinstance(insn.expression, Reduction) and nresults > 1:
                replacement_insns = [
                        lp.Assignment(
                            id=insn_id_gen(insn.id),
                            assignee=assignee,
                            expression=new_expr,
                            **kwargs)
                        for assignee, new_expr in zip(
                            insn.assignees, new_expressions)]

            else:
                new_expr, = new_expressions
                replacement_insns = [
                        make_assignment(
                            id=insn_id_gen(insn.id),
                            assignees=insn.assignees,
                            expression=new_expr,
                            **kwargs)
                        ]

            insn_id_replacements[insn.id] = [
                    rinsn.id for rinsn in replacement_insns]

            insn_queue = generated_insns + replacement_insns + insn_queue

            # The reduction expander needs an up-to-date kernel
            # object to find dependencies. Keep temp_kernel up-to-date.

            temp_kernel = kernel.copy(
                    instructions=new_insns + insn_queue,
                    temporary_variables=new_temporary_variables,
                    domains=domains)
            temp_kernel = lp.replace_instruction_ids(
                    temp_kernel, insn_id_replacements)

        else:
            # nothing happened, we're done with insn
            assert not new_insn_add_depends_on

            new_insns.append(insn)

    kernel = kernel.copy(
            instructions=new_insns,
            temporary_variables=new_temporary_variables,
            domains=domains)

    kernel = lp.replace_instruction_ids(kernel, insn_id_replacements)

    kernel = lp.tag_inames(kernel, new_iname_tags)

    return kernel