Exemple #1
0
class ApproximateIndexer(object):

    def __init__(self,index_name,model_path,lmdb_path,V=16, M=16):
        self.model = LOPQModel(V,M)
        self.index_name = index_name
        self.searcher = None
        self.model_path = model_path
        self.lmdb_path = lmdb_path

    def load(self):
        self.model.load_proto(self.model_path)

    def fit(self,train):
        print train.shape
        self.pca_reduction = PCA(n_components=256)
        self.pca_reduction.fit(train)
        train = self.pca_reduction.transform(train)
        self.P, self.mu = pca(train)
        train = np.dot(train, self.P)
        print train.shape
        self.model.fit(train, n_init=1)

    def transform(self,test):
        print test.shape
        test = self.pca_reduction.transform(test)
        test = test - self.mu
        test = np.dot(test,self.P)
        print test.shape
        return test

    def fit_model(self,train):
        self.fit(train)
        self.model.export_proto(self.model_path)
        self.searcher = LOPQSearcher(self.model) # LOPQSearcherLMDB(self.model,self.lmdb_path)

    def experiment(self,data):
        train, test = train_test_split(data, test_size=0.1)
        print data.shape,train.shape,test.shape
        nns = compute_all_neighbors(test, train)
        self.fit_model(train)
        self.searcher.add_data(self.transform(train))
        recall, _ = get_recall(self.searcher, self.transform(test), nns)
        print 'Recall (V={}, M={}, subquants={}): {}'.format(self.model.V, self.model.M, self.model.subquantizer_clusters, str(recall))

    def add_data(self,data):
        self.searcher.add_data(data)

    def search(self,x):
        return self.searcher.search(x,quota=100)
Exemple #2
0
 def load(self):
     self.model = LOPQModel.load_proto(self.model_proto_filename)
     self.pca_reduction = pickle.load(file(self.pca_filename))
     self.P = np.load(file(self.P_filename))
     self.mu = np.load(file(self.mu_filename))
     self.permuted_inds = np.load(file(self.permuted_inds_filename))
     self.searcher = LOPQSearcherLMDB(model=self.model,lmdb_path=self.model_lmdb_filename)
Exemple #3
0
 def load(self):
     logging.info("Loading LOPQ indexer model {}".format(self.name))
     self.model = LOPQModel.load_proto(self.model_proto_filename)
     self.pca_reduction = pickle.load(file(self.pca_filename))
     self.P = np.load(file(self.P_filename))
     self.mu = np.load(file(self.mu_filename))
     self.permuted_inds = np.load(file(self.permuted_inds_filename))
Exemple #4
0
 def load(self):
     self.model = LOPQModel.load_proto(self.model_proto_filename)
     self.pca_reduction = pickle.load(file(self.pca_filename))
     self.P = np.load(file(self.P_filename))
     self.mu = np.load(file(self.mu_filename))
     self.permuted_inds = np.load(file(self.permuted_inds_filename))
     self.searcher = LOPQSearcherLMDB(model=self.model,
                                      lmdb_path=self.model_lmdb_filename)
Exemple #5
0
 def load(self):
     self.model = LOPQModel.load_proto(self.model_proto_filename)