Exemple #1
0
    def __init__(self,
                 logger,
                 use_cpu=False,
                 num_gpu=1,
                 gan_type='WGAN_GP',
                 gan_k=1,
                 lr_dis=1e-4,
                 train_crop_size=40):

        super(AdversarialLoss, self).__init__()
        self.logger = logger
        self.gan_type = gan_type
        self.gan_k = gan_k
        self.device = torch.device('cpu' if use_cpu else 'cuda')
        self.discriminator = discriminator.Discriminator(train_crop_size *
                                                         4).to(self.device)
        if (num_gpu > 1):
            self.discriminator = nn.DataParallel(self.discriminator,
                                                 list(range(num_gpu)))
        if (gan_type in ['WGAN_GP', 'GAN']):
            self.optimizer = optim.Adam(self.discriminator.parameters(),
                                        betas=(0, 0.9),
                                        eps=1e-8,
                                        lr=lr_dis)
        else:
            raise SystemExit('Error: no such type of GAN!')

        self.bce_loss = torch.nn.BCELoss().to(self.device)
 def __init__(self, args, gan_type):
     super(Adversarial, self).__init__()
     self.gan_type = gan_type
     self.gan_k = args.gan_k
     self.discriminator = discriminator.Discriminator(args, gan_type)
     if gan_type != 'WGAN_GP':
         self.optimizer = utility.make_optimizer(args, self.discriminator)
     else:
         self.optimizer = optim.Adam(
             self.discriminator.parameters(),
             betas=(0, 0.9), eps=1e-8, lr=1e-5
         )
     self.scheduler = utility.make_scheduler(args, self.optimizer)
Exemple #3
0
 def __init__(self, args, gan_type):
     super(Adversarial, self).__init__()
     self.gan_type = gan_type
     self.gan_k = args.gan_k
     self.aprx_epochs = args.aprx_epochs
     self.aprx_training_dir = args.aprx_training_dir
     self.aprx_training_dir_HR = args.aprx_training_dir_HR
     self.batch_size = args.batch_size
     self.patch_size = args.patch_size
     self.discriminator = discriminator.Discriminator(args, gan_type)
     self.optimizer = utility.make_optimizer(args, self.discriminator)
     self.scheduler = utility.make_scheduler(args, self.optimizer)
     self.a_counter = 0
Exemple #4
0
    def __init__(self, args, gan_type):
        super(Adversarial, self).__init__()
        self.gan_type = gan_type
        self.gan_k = args.gan_k
        self.dis = discriminator.Discriminator(args)
        if gan_type == 'WGAN_GP':
            # see https://arxiv.org/pdf/1704.00028.pdf pp.4
            optim_dict = {
                'optimizer': 'ADAM',
                'betas': (0, 0.9),
                'epsilon': 1e-8,
                'lr': 1e-5,
                'weight_decay': args.weight_decay,
                'decay': args.decay,
                'gamma': args.gamma
            }
            optim_args = SimpleNamespace(**optim_dict)
        else:
            optim_args = args

        self.optimizer = utility.make_optimizer(optim_args, self.dis)