Exemple #1
0
def forward(p, h, x_true, y_true, i):

    i *= 0

    inp = join2(h, x_true)

    emb = T.dot(inp, p['W0'])

    h0 = lngru_layer(p,
                     emb, {},
                     prefix='gru1',
                     mask=None,
                     one_step=True,
                     init_state=h[:, :1024],
                     backwards=False)

    h1 = T.nnet.relu(ln(T.dot(h0[0], p['W1'][i])), alpha=0.02)
    h2 = T.nnet.relu(ln(T.dot(h1, p['W2'][i])), alpha=0.02)
    #h2 = h1

    y_est = T.nnet.softmax(T.dot(h2, p['Wy'][i]))

    #h_next = T.dot(h2, p['Wo'][i])
    h_next = h1

    loss = crossent(y_est, y_true)

    acc = accuracy(y_est, y_true)

    return h_next, y_est, loss, acc, y_est
Exemple #2
0
def network(p, x, true_y):

    x = x.flatten(2)

    h1 = lrelu(T.dot(x, p['W1']))
    h2 = lrelu(T.dot(h1, p['W2']))
    y = T.nnet.softmax(T.dot(h2, p['W3']))

    loss = crossent(y, true_y)
    acc = accuracy(y, true_y)

    return loss, acc
Exemple #3
0
def network(params, x, y, p1, p2):

    #x *= srng.binomial(n=1,p=p1,size=x.shape,dtype='float32').astype('float32')/p1

    h1 = T.nnet.relu(bn(T.dot(bn(x), params['W1']) + params['b1']))
    #h1 *= srng.binomial(n=1,p=p2,size=h1.shape,dtype='float32').astype('float32')/p2
    h2 = T.nnet.relu(bn(T.dot(h1, params['W2']) + params['b2']))
    #h2 *= srng.binomial(n=1,p=p2,size=h2.shape,dtype='float32').astype('float32')/p2
    h3 = bn(T.dot(h2, params['W3']) + params['b3'])

    p = T.nnet.softmax(h3)

    loss = crossent(p, y)
    acc = accuracy(p, y)

    return {'loss': loss, 'p': p, 'acc': acc}
Exemple #4
0
def forward(p, h, x_true, y_true, i):

    inp = join2(h, x_true)

    h1 = T.nnet.relu(ln(T.dot(inp, p['W1'][i])), alpha=0.02)
    #h2 = T.nnet.relu(ln(T.dot(h1, p['W2'])), alpha=0.02)
    h2 = h1

    y_est = T.nnet.softmax(T.dot(h2, p['Wy'][i]))

    #h_next = T.dot(h2, p['Wo'][i])
    h_next = h1

    loss = crossent(y_est, y_true)

    acc = accuracy(y_est, y_true)

    return h_next, y_est, loss, acc
Exemple #5
0
y_true = T.ivector()
h_in = T.matrix()
step = T.iscalar()

print "giving x and y on all steps"

y_true_use = T.switch(T.ge(step, 4), y_true, 10)

x_true_use = x_true# * T.eq(step,0)

h_next, y_est, class_loss,acc = forward(params_forward, h_in, x_true_use, y_true_use,step)

h_in_rec, x_rec, y_rec = synthmem(params_synthmem, h_next,step)

print "0.1 mult"
rec_loss = 0.1 * (T.sqr(x_rec - x_true_use).sum() + T.sqr(h_in - h_in_rec).sum() + crossent(y_rec, y_true_use))

#should pull y_rec and y_true together!  

print "TURNED OFF CLASS LOSS IN FORWARD"
#TODO: add in back params_forward.values()
updates_forward = lasagne.updates.adam(rec_loss + 0.0 * class_loss, params_forward.values() + params_synthmem.values())

forward_method = theano.function(inputs = [x_true,y_true,h_in,step], outputs = [h_next, rec_loss, class_loss,acc,y_est], updates=updates_forward)
forward_method_noupdate = theano.function(inputs = [x_true,y_true,h_in,step], outputs = [h_next, rec_loss, class_loss,acc])


'''
Goal: get a method that takes h[i+1] and dL/dh[i+1].  It runs synthmem on h[i+1] to get estimates of x[i], y[i], and h[i].  It then runs the forward on those values and gets that loss.  

Exemple #6
0
if only_y_last_step:
    y_true_use = T.switch(T.eq(step, num_steps - 1), y_true, 10)
else:
    y_true_use = y_true

x_true_use = x_true
#x_true_use = T.switch(T.eq(step, 0), x_true, x_true*0.0)

h_next, y_est, class_loss, acc, probs = forward(params_forward, h_in,
                                                x_true_use, y_true_use, step)

h_in_rec, x_rec, y_rec = synthmem(params_synthmem, h_next, step)

print "0.1 mult"
rec_loss = 0.1 * (T.sqr(x_rec - x_true_use).sum() +
                  T.sqr(h_in - h_in_rec).sum() + crossent(y_rec, y_true_use))

#should pull y_rec and y_true together!

updates_forward = lasagne.updates.adam(
    rec_loss + use_class_loss_forward * class_loss,
    params_forward.values() + params_synthmem.values(),
    learning_rate=lr_f,
    beta1=beta1_f)

forward_method = theano.function(
    inputs=[x_true, y_true, h_in, step],
    outputs=[h_next, rec_loss, class_loss, acc, y_est],
    updates=updates_forward)
forward_method_noupdate = theano.function(
    inputs=[x_true, y_true, h_in, step],