def get_model(args): loss_dict = {} softmaxLoss = SoftmaxCrossEntropyLoss("softmax") euclideanLoss = EuclideanLoss("euclidean") loss_dict['softmax'] = softmaxLoss loss_dict['euclidean'] = euclideanLoss config = { 'learning_rate': args.learning_rate, 'weight_decay': args.weight_decay, 'momentum': args.momentum, 'batch_size': args.batch_size, 'max_epoch': args.max_epoch, 'disp_freq': args.disp_freq, 'test_epoch': args.test_epoch } loss = loss_dict[args.loss] model = Network() layer = args.hidden_layer if layer == 1: model.add(Linear('fc1', 784, args.hidden_size, 0.01)) model.add(get_activation(args.activation, 0)) model.add(Linear('fc2', args.hidden_size, 10, 0.01)) model.add(get_activation(args.activation, 1)) else: model.add(Linear('fc1', 784, args.hidden_size, 0.01)) model.add(get_activation(args.activation, 0)) model.add(Linear('fc2', args.hidden_size, args.hidden_size//2, 0.01)) model.add(get_activation(args.activation, 1)) model.add(Linear('fc2', args.hidden_size//2, 10, 0.01)) model.add(get_activation(args.activation, 2)) return model, config, loss
def build_model(config): model = Network() layer_num = 0 for layer in config['use_layer']: if layer['type'] == "Linear": in_num = layer['in_num'] out_num = layer['out_num'] if "init_std" in layer.keys(): model.add( Linear(layer['type'] + str(layer_num), in_num, out_num, init_std=layer['init_std'])) else: model.add( Linear(layer['type'] + str(layer_num), in_num, out_num)) layer_num += 1 elif layer['type'] == 'Relu': model.add(Relu(layer['type'] + str(layer_num))) layer_num += 1 elif layer['type'] == 'Sigmoid': model.add(Sigmoid(layer['type'] + str(layer_num))) layer_num += 1 else: assert 0 loss_name = config['use_loss'] if loss_name == 'EuclideanLoss': loss = EuclideanLoss(loss_name) elif loss_name == 'SoftmaxCrossEntropyLoss': loss = SoftmaxCrossEntropyLoss(loss_name) else: assert 0 return model, loss
def getNetwork(): ''' to obtain network structure from specified file ''' file_name = "models/structure.json" if len(sys.argv)>1: file_name = sys.argv[1] f = file(file_name, "r") s = f.read() f.close() networks = json.loads(s) for network in networks: config = network['config'] dis_model = network['model'] model = Network() for layer in dis_model: if layer['type'] == 'Linear': model.add(Linear(layer['name'], layer['in_num'], layer['out_num'], layer['std'])) if layer['type'] == 'Relu': model.add(Relu(layer['name'])) if layer['type'] == 'Sigmoid': model.add(Sigmoid(layer['name'])) if layer['type'] == 'Softmax': model.add(Softmax(layer['name'])) loss = EuclideanLoss('loss') if 'loss' in config: if config['loss'] == 'CrossEntropyLoss': loss = CrossEntropyLoss('loss') yield network['name'], model, config, loss
def Model_Linear_Relu_1_EuclideanLoss(): name = '1_Relu_EuclideanLoss' model = Network() model.add(Linear('fc1', 784, 256, 0.01)) model.add(Relu('a1')) model.add(Linear('fc2', 256, 10, 0.01)) loss = EuclideanLoss(name='loss') return name, model, loss
def Model_Linear_Relu_2_EuclideanLoss(): name = '2_Relu_EuclideanLoss' model = Network() model.add(Linear('fc1', 784, 441, 0.01)) model.add(Relu('a1')) model.add(Linear('fc2', 441, 196, 0.01)) model.add(Relu('a2')) model.add(Linear('fc3', 196, 10, 0.01)) loss = EuclideanLoss(name='loss') return name, model, loss
from layers import Relu, Sigmoid, Linear from loss import EuclideanLoss from solve_net import train_net, test_net from load_data import load_mnist_2d import numpy as np train_data, test_data, train_label, test_label = load_mnist_2d('data') # Your model defintion here # You should explore different model architecture model = Network() model.add(Linear('fc1', 784, 100, 0.01)) model.add(Sigmoid('Sigmoid1')) model.add(Linear('fc2', 100, 10, 0.01)) loss = EuclideanLoss(name='loss') # Training configuration # You should adjust these hyperparameters # NOTE: one iteration means model forward-backwards one batch of samples. # one epoch means model has gone through all the training samples. # 'disp_freq' denotes number of iterations in one epoch to display information. config = { 'learning_rate': 0.08, 'weight_decay': 0.001, 'momentum': 0.9, 'batch_size': 80, 'max_epoch': 100, 'disp_freq': 10, 'test_epoch': 1
model4 = Network(name='model4') model4.add(Linear('m4_fc1', 784, 512, 0.01)) model4.add(Relu('m4_fc2')) model4.add(Linear('m4_fc3', 512, 128, 0.01)) model4.add(Relu('m4_fc4')) model4.add(Linear('m4_fc5', 128, 10, 0.01)) model5 = Network(name='model5') model5.add(Linear('m5_fc1', 784, 392, 0.01)) model5.add(Relu('m5_fc2')) model5.add(Linear('m5_fc3', 392, 196, 0.01)) model5.add(Relu('m5_fc4')) model5.add(Linear('m5_fc5', 196, 10, 0.01)) loss1 = EuclideanLoss(name='Euclidean') loss2 = SoftmaxCrossEntropyLoss(name='XEntropy') #models = [model1, model2, model3, model4, model5] #losses = [loss1, loss2] model = model4 loss = loss2 # Training configuration # You should adjust these hyperparameters # NOTE: one iteration means model forward-backwards one batch of samples. # one epoch means model has gone through all the training samples. # 'disp_freq' denotes number of iterations in one epoch to display information. config = { 'learning_rate': 0.01,
yl = np.array(loss_list) t = np.array(time_list) return [final_acc, end_time - start_time, x, ya, yl, t] if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--train_one_layer", default=False) parser.add_argument("--train_two_layer", default=False) parser.add_argument("--modified_gd", default=False) parser.add_argument("--stop_time", default=0, type=int) args = parser.parse_args() train_data, test_data, train_label, test_label = load_mnist_2d('data') loss1 = EuclideanLoss(name="euclidean loss") loss2 = SoftmaxCrossEntropyLoss(name="softmax cross entropy loss") config = { 'learning_rate': 0.01, 'weight_decay': 0.001, 'momentum': 0.8, 'batch_size': 64, 'max_epoch': 50, 'disp_freq': 1000, 'test_epoch': 2, 'stop_time': args.stop_time } if Type(args.train_one_layer): config['max_epoch'] = 50
if args.layers == 0: model.add(Linear('fc', 784, 10, args.std)) elif args.layers == 1: model.add(Linear('fc1', 784, 256, args.std)) model.add(activation('act')) model.add(Linear('fc2', 256, 10, args.std)) else: model.add(Linear('fc1', 784, 256, args.std)) model.add(activation('act')) model.add(Linear('fc2', 256, 128, args.std)) model.add(activation('act')) model.add(Linear('fc3', 128, 10, args.std)) if args.loss == 'mse': model.add(Sigmoid('sigmoid')) loss = EuclideanLoss('loss') else: loss = SoftmaxCrossEntropyLoss('loss') # Training configuration # You should adjust these hyperparameters # NOTE: one iteration means model forward-backwards one batch of samples. # one epoch means model has gone through all the training samples. # 'disp_freq' denotes number of iterations in one epoch to display information. config = { 'learning_rate': args.lr, 'weight_decay': args.weight_decay, 'momentum': args.momentum, 'batch_size': args.batch_size, 'max_epoch': args.max_epoch,