def gauss2_get_loss(output_tensor, private_tensor, rawc_tensor, prior_tensor, xhat, chat, z, cmetric, privmetric, order): """ Compute the losses of the gaussian model cross entropy for the private c L2 loss for x reconstruction privacy metric given and calculated as KL, MI or SibMI args: x, xhat c, chat prior cmetric, privmetric order if privmetric is given as sibson MI """ with tf.name_scope('pub_prediction'): with tf.name_scope('pub_distance'): pub_dist = tf.reduce_mean((xhat - output_tensor)**2) with tf.name_scope('sec_prediction'): with tf.name_scope('sec_distance'): pchat = tf.sigmoid(chat) sec_dist = tf.reduce_mean((pchat - private_tensor)**2) #correct_pred = tf.less(tf.abs(chat - private_tensor), 0.5) tmpchat = tf.concat([pchat, 1.0 - pchat], axis=1) tmppriv = tf.concat([private_tensor, 1.0 - private_tensor], axis=1) correct_pred = tf.equal(tf.argmax(tmpchat, axis=1), tf.argmax(tmppriv, axis=1)) sec_acc = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) loss1, KLloss = dvibloss.encoding_cost(xhat, chat, output_tensor, private_tensor, prior_tensor) loss2x, loss2c = dvibloss.recon_cost(xhat, chat, output_tensor, private_tensor, cmetric="CE") # Record losses of MI approximation and sibson MI h_c, h_cz, _ = dvibloss.MI_approx(input_tensor, private_tensor, rawc_tensor, xhat, chat, z) I_c_cz = tf.abs(h_c - h_cz) # use alpha = 3 first, may be tuned sibMI_c_cz = dvibloss.sibsonMI_approx(z, chat, order, independent=True) # Distortion constraint lossdist = rou_tensor * tf.maximum(0.0, loss2x - D_tensor) # Compose losses if lossmetric == "KL": loss1 = encode_coef * lossdist + KLloss if lossmetric == "MI": loss1 = encode_coef * lossdist + I_c_cz if lossmetric == "sibMI": loss1 = encode_coef * lossdist + sibMI_c_cz loss2 = decode_coef * lossdist + loss2c #loss2 = loss2c #loss3 = dvibloss.get_vae_cost(mean, stddev) return secacc, loss2x, loss2c, KLloss, I_c_cz, sibMI_c_cz, loss1, loss2
def gauss2_get_loss_CGAP(output_tensor, private_tensor, prior_tensor, rawc_tensor, rou_tensor, D_tensor, xhat, chat, z, beta0, beta1, gamma0, gamma1, cmetric, privmetric, order): with tf.name_scope('pub_prediction'): with tf.name_scope('pub_distance'): pub_dist = tf.reduce_mean((xhat - output_tensor)**2) with tf.name_scope('sec_prediction'): with tf.name_scope('sec_distance'): pchat = tf.sigmoid(chat) sec_dist = tf.reduce_mean((pchat - private_tensor)**2) tmpchat = tf.concat([pchat, 1.0 - pchat], axis=1) tmppriv = tf.concat([private_tensor, 1.0 - private_tensor], axis=1) correct_pred = tf.equal(tf.argmax(tmpchat, axis=1), tf.argmax(tmppriv, axis=1)) #correct_pred = tf.less(tf.abs(chat - private_tensor), 0.5) sec_acc = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) #Record losses of MI approx and sibson MI loss2x, loss2c = dvibloss.recon_cost(xhat, chat, output_tensor, private_tensor, softmax=True, xmetric="L2") _, KLloss = dvibloss.encoding_cost(xhat, chat, output_tensor, private_tensor, prior_tensor, xmetric="CE", independent=False) sibMI_c_cz = dvibloss.sibsonMI_approx(z, chat, order, independent=False) h_c, h_cz, _ = dvibloss.MI_approx(output_tensor, private_tensor, rawc_tensor, xhat, chat, z) I_c_cz = tf.abs(h_c - h_cz) #Calculate the loss for CGAP, using the log loss as specified ptilde = 0.5 lossdist = ptilde * (beta0**2 + gamma0**2) + (1 - ptilde) * (beta1**2 + gamma1**2) loss1 = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits( labels=private_tensor, logits=chat)) + rou_tensor * tf.maximum(0.0, lossdist - D_tensor) loss2 = -tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits( labels=private_tensor, logits=chat)) + rou_tensor * tf.maximum( 0.0, lossdist - D_tensor) #loss = sibMI_c_cz + rou_tensor * tf.maximum(0.0, lossdist - D_tensor) return sec_acc, loss2x, loss2c, KLloss, I_c_cz, sibMI_c_cz, loss1, loss2
def eval_checkpt(encode_coef, lossmetric="KL"): prior = calc_pc() data_dir = os.path.join(FLAGS.working_directory, "data") mnist_dir = os.path.join(data_dir, "mnist") model_directory = os.path.join( mnist_dir, lossmetric + "privacy_checkpoints" + str(encode_coef)) input_tensor = tf.placeholder(tf.float32, [FLAGS.batch_size, FLAGS.input_size]) output_tensor = tf.placeholder(tf.float32, [FLAGS.batch_size, FLAGS.output_size]) private_tensor = tf.placeholder(tf.float32, [FLAGS.batch_size, FLAGS.private_size]) prior_tensor = tf.constant(prior, tf.float32, [FLAGS.private_size]) rawc_tensor = tf.placeholder(tf.float32, [FLAGS.batch_size]) #load data not necessary for mnist data, formatted as vectors of real values between 0 and 1 mnist = input_data.read_data_sets(mnist_dir, one_hot=True) def get_feed(batch_no, training): if training: x, c = mnist.train.next_batch(FLAGS.batch_size) else: x, c = mnist.test.next_batch(FLAGS.batch_size) rawc = np.argmax(c, axis=1) return { input_tensor: x, output_tensor: x, private_tensor: c[:, :FLAGS.private_size], rawc_tensor: rawc } #instantiate model with pt.defaults_scope(activation_fn=tf.nn.relu, batch_normalize=True, learned_moments_update_rate=3e-4, variance_epsilon=1e-3, scale_after_normalization=True): with pt.defaults_scope(phase=pt.Phase.train): with tf.variable_scope("encoder", reuse=False) as scope: z = dvibcomp.privacy_encoder(input_tensor, private_tensor) encode_params = tf.trainable_variables() e_param_len = len(encode_params) with tf.variable_scope("decoder", reuse=False) as scope: xhat, chat, mean, stddev = dvibcomp.mnist_predictor(z) all_params = tf.trainable_variables() d_param_len = len(all_params) - e_param_len # Calculating losses _, KLloss = dvibloss.encoding_cost(xhat, chat, input_tensor, private_tensor, prior_tensor) loss2x, loss2c = dvibloss.recon_cost(xhat, chat, input_tensor, private_tensor, softmax=True) # Record losses of MI approximation and sibson MI h_c, h_cz, _, _ = dvibloss.MI_approx(input_tensor, private_tensor, rawc_tensor, xhat, chat, z) I_c_cz = tf.abs(h_c - h_cz) # use alpha = 3 first, may be tuned sibMI_c_cz = dvibloss.sibsonMI_approx(z, chat, 3) # Compose losses if lossmetric == "KL": loss1 = encode_coef * loss2x + KLloss if lossmetric == "MI": loss1 = encode_coef * loss2x + I_c_cz if lossmetric == "sibMI": loss1 = encode_coef * loss2x + sibMI_c_cz loss2 = decode_coef * loss2x + loss2c loss3 = dvibloss.get_vae_cost(mean, stddev) with tf.name_scope('pub_prediction'): with tf.name_scope('pub_distance'): pub_dist = tf.reduce_mean((xhat - output_tensor)**2) with tf.name_scope('sec_prediction'): with tf.name_scope('sec_distance'): sec_dist = tf.reduce_mean((chat - private_tensor)**2) #correct_pred = tf.less(tf.abs(chat - private_tensor), 0.5) correct_pred = tf.equal(tf.argmax(chat, axis=1), tf.argmax(private_tensor, axis=1)) sec_acc = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) pdb.set_trace() sess = tf.Session() checkpt = tf.train.latest_checkpoint(model_directory) saver = tf.train.Saver() saver.restore(sess, checkpt) print("Restored model from checkpoint %s" % (checkpt)) x_val = [] xhat_val = [] feeds = get_feed(FLAGS.test_dataset_size, False) x_val.extend(feeds[input_tensor]) xhat_val.extend(sess.run(xhat, feeds)) np.savez(os.path.join(model_directory, 'vis_x_xhat'), x=x_val, xhat=xhat_val) sess.close() return
def train_ferg(prior, lossmetric="KL", order=1.01): '''Train model to output transformation that prevents leaking private info ''' data_dir = os.path.join(FLAGS.working_directory, "data") dataset_dir = os.path.join(data_dir, "ferg") model_directory = os.path.join( dataset_dir, lossmetric + "privacy_checkpoints" + str(encode_coef) + '_' + str(decode_coef) + '_' + str(order)) input_tensor = tf.placeholder(tf.float32, [FLAGS.batch_size, FLAGS.input_size]) output_tensor = tf.placeholder(tf.float32, [FLAGS.batch_size, FLAGS.output_size]) private_tensor = tf.placeholder(tf.float32, [FLAGS.batch_size, FLAGS.private_size]) prior_tensor = tf.constant(prior, tf.float32, [FLAGS.private_size]) rawc_tensor = tf.placeholder(tf.float32, [FLAGS.batch_size]) rawy_tensor = tf.placeholder(tf.float32, [FLAGS.batch_size]) #load data not necessary for mnist data, formatted as vectors of real values between 0 and 1 #load FERG dataset and shuffle, save, reload fergdata = np.load(os.path.join(dataset_dir, "ferg256.npz")) #fergdataindices = np.random.permutation(FLAGS.dataset_size+FLAGS.test_dataset_size) #fergdataimgs = fergdata['imgs'][fergdataindices] #fergdataidentity = fergdata['identity'][fergdataindices] #fergdataexpression = fergdata['expression'][fergdataindices] #np.savez(os.path.join(dataset_dir, "ferg256.npz"), # imgs = fergdataimgs, # identity = fergdataidentity, # expression = fergdataexpression) #fergdata = np.load(os.path.join(dataset_dir, "ferg256.npz")) def get_feed(batch_no, training, ferg): if training: x = ferg['imgs'][batch_no * FLAGS.batch_size:(batch_no + 1) * FLAGS.batch_size] c = ferg['identity'][batch_no * FLAGS.batch_size:(batch_no + 1) * FLAGS.batch_size] y = ferg['expression'][batch_no * FLAGS.batch_size:(batch_no + 1) * FLAGS.batch_size] else: x = ferg['imgs'][batch_no * FLAGS.batch_size + FLAGS.dataset_size:(batch_no + 1) * FLAGS.batch_size + FLAGS.dataset_size] c = ferg['identity'][batch_no * FLAGS.batch_size + FLAGS.dataset_size:(batch_no + 1) * FLAGS.batch_size + FLAGS.dataset_size] y = ferg['expression'][batch_no * FLAGS.batch_size + FLAGS.dataset_size:(batch_no + 1) * FLAGS.batch_size + FLAGS.dataset_size] x = x.reshape([FLAGS.batch_size, FLAGS.input_size]) # convert labels to one hot encoding cs = np.zeros((FLAGS.batch_size, FLAGS.private_size)) cs[np.arange(FLAGS.batch_size), c] = 1 ys = np.zeros((FLAGS.batch_size, FLAGS.output_size)) ys[np.arange(FLAGS.batch_size), y] = 1 return { input_tensor: x, output_tensor: ys, private_tensor: cs, rawc_tensor: c, rawy_tensor: y } #instantiate model with pt.defaults_scope(activation_fn=tf.nn.relu, batch_normalize=True, learned_moments_update_rate=3e-4, variance_epsilon=1e-3, scale_after_normalization=True): with pt.defaults_scope(phase=pt.Phase.train): with tf.variable_scope("encoder") as scope: z = dvibcomp.ferg_encoder(input_tensor) encode_params = tf.trainable_variables() e_param_len = len(encode_params) with tf.variable_scope("decoder") as scope: yhat, chat, mean, stddev = dvibcomp.ferg_twotask_predictor(z) all_params = tf.trainable_variables() d_param_len = len(all_params) - e_param_len # Calculating losses _, KLloss = dvibloss.encoding_cost(yhat, chat, output_tensor, private_tensor, prior_tensor, xmetric="CE", independent=False) loss2x, loss2c = dvibloss.recon_cost(yhat, chat, output_tensor, private_tensor, softmax=True, xmetric="CE") # Record losses of MI approximation and sibson MI h_c, h_cz, _ = dvibloss.MI_approx(input_tensor, private_tensor, rawc_tensor, yhat, chat, z) I_c_cz = tf.abs(h_c - h_cz) # use alpha = 3 first, may be tuned sibMI_c_cz = dvibloss.sibsonMI_approx(z, chat, order, independent=False) # Compose losses if lossmetric == "KL": loss1 = encode_coef * loss2x + KLloss if lossmetric == "MI": loss1 = encode_coef * loss2x + I_c_cz if lossmetric == "sibMI": loss1 = encode_coef * loss2x + sibMI_c_cz loss2 = decode_coef * loss2x + loss2c loss3 = dvibloss.get_vae_cost(mean, stddev) with tf.name_scope('pub_prediction'): with tf.name_scope('pub_distance'): pub_dist = tf.reduce_mean((yhat - output_tensor)**2) correct_predpub = tf.equal(tf.argmax(yhat, axis=1), tf.argmax(output_tensor, axis=1)) pub_acc = tf.reduce_mean(tf.cast(correct_predpub, tf.float32)) with tf.name_scope('sec_prediction'): with tf.name_scope('sec_distance'): sec_dist = tf.reduce_mean((chat - private_tensor)**2) #correct_pred = tf.less(tf.abs(chat - private_tensor), 0.5) correct_pred = tf.equal(tf.argmax(chat, axis=1), tf.argmax(private_tensor, axis=1)) sec_acc = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) optimizer = tf.train.AdamOptimizer(FLAGS.learning_rate, epsilon=1.0) e_train = pt.apply_optimizer(optimizer, losses=[loss1], regularize=True, include_marked=True, var_list=encode_params) d_train = pt.apply_optimizer(optimizer, losses=[loss2], regularize=True, include_marked=True, var_list=all_params[e_param_len:]) # Logging matrices e_loss_train = np.zeros(FLAGS.max_epoch) d_loss_train = np.zeros(FLAGS.max_epoch) pub_dist_train = np.zeros(FLAGS.max_epoch) sec_dist_train = np.zeros(FLAGS.max_epoch) loss2x_train = np.zeros(FLAGS.max_epoch) loss2c_train = np.zeros(FLAGS.max_epoch) KLloss_train = np.zeros(FLAGS.max_epoch) MIloss_train = np.zeros(FLAGS.max_epoch) sibMIloss_train = np.zeros(FLAGS.max_epoch) pub_acc_train = np.zeros(FLAGS.max_epoch) sec_acc_train = np.zeros(FLAGS.max_epoch) e_loss_val = np.zeros(FLAGS.max_epoch) d_loss_val = np.zeros(FLAGS.max_epoch) pub_dist_val = np.zeros(FLAGS.max_epoch) sec_dist_val = np.zeros(FLAGS.max_epoch) loss2x_val = np.zeros(FLAGS.max_epoch) loss2c_val = np.zeros(FLAGS.max_epoch) KLloss_val = np.zeros(FLAGS.max_epoch) MIloss_val = np.zeros(FLAGS.max_epoch) sibMIloss_val = np.zeros(FLAGS.max_epoch) pub_acc_val = np.zeros(FLAGS.max_epoch) sec_acc_val = np.zeros(FLAGS.max_epoch) yhat_val = [] # Tensorboard logging #tf.summary.scalar('e_loss', loss1) #tf.summary.scalar('KL', KLloss) #tf.summary.scalar('loss_x', loss2x) #tf.summary.scalar('loss_c', loss2c) #tf.summary.scalar('pub_dist', pub_dist) #tf.summary.scalar('sec_dist', sec_dist) init = tf.global_variables_initializer() saver = tf.train.Saver() # Config session for memory config = tf.ConfigProto() #config.gpu_options.allow_growth = True #config.gpu_options.per_process_gpu_memory_fraction = 0.8 config.log_device_placement = False sess = tf.Session(config=config) sess.run(init) #merged = tf.summary.merge_all() #train_writer = tf.summary.FileWriter(FLAGS.summary_dir + '/train', sess.graph) #test_writer = tf.summary.FileWriter(FLAGS.summary_dir + '/test') pdb.set_trace() for epoch in range(FLAGS.max_epoch): widgets = ["epoch #%d|" % epoch, Percentage(), Bar(), ETA()] pbar = ProgressBar(maxval=FLAGS.updates_per_epoch, widgets=widgets) pbar.start() pub_loss = 0 sec_loss = 0 pub_accv = 0 sec_accv = 0 e_training_loss = 0 d_training_loss = 0 KLv = 0 MIv = 0 sibMIv = 0 loss2xv = 0 loss2cv = 0 for i in range(FLAGS.updates_per_epoch): pbar.update(i) feeds = get_feed(i, True, fergdata) zv, yhatv, chatv, meanv, stddevv, sec_pred = sess.run( [z, yhat, chat, mean, stddev, correct_pred], feeds) pub_tmp, sec_tmp, pub_acc_tmp, sec_acc_tmp = sess.run( [pub_dist, sec_dist, pub_acc, sec_acc], feeds) MItmp, sibMItmp, KLtmp, loss2xtmp, loss2ctmp, loss3tmp = sess.run( [I_c_cz, sibMI_c_cz, KLloss, loss2x, loss2c, loss3], feeds) _, e_loss_value = sess.run([e_train, loss1], feeds) _, d_loss_value = sess.run([d_train, loss2], feeds) if (np.isnan(e_loss_value) or np.isnan(d_loss_value)): pdb.set_trace() break #train_writer.add_summary(summary, i) e_training_loss += e_loss_value d_training_loss += d_loss_value pub_loss += pub_tmp sec_loss += sec_tmp pub_accv += pub_acc_tmp sec_accv += sec_acc_tmp KLv += KLtmp MIv += MItmp sibMIv += sibMItmp loss2xv += loss2xtmp loss2cv += loss2ctmp e_training_loss = e_training_loss / \ (FLAGS.updates_per_epoch) d_training_loss = d_training_loss / \ (FLAGS.updates_per_epoch) pub_loss /= (FLAGS.updates_per_epoch) sec_loss /= (FLAGS.updates_per_epoch) pub_accv /= (FLAGS.updates_per_epoch) sec_accv /= (FLAGS.updates_per_epoch) loss2xv /= (FLAGS.updates_per_epoch) loss2cv /= (FLAGS.updates_per_epoch) KLv /= (FLAGS.updates_per_epoch) MIv /= (FLAGS.updates_per_epoch) sibMIv /= (FLAGS.updates_per_epoch) print("Loss for E %f, and for D %f" % (e_training_loss, d_training_loss)) print('Training public loss at epoch %s: %s, public accuracy: %s' % (epoch, pub_loss, pub_accv)) print('Training private loss at epoch %s: %s, private accuracy: %s' % (epoch, sec_loss, sec_accv)) print('Training KL loss at epoch %s: %s' % (epoch, KLv)) e_loss_train[epoch] = e_training_loss d_loss_train[epoch] = d_training_loss pub_dist_train[epoch] = pub_loss sec_dist_train[epoch] = sec_loss loss2x_train[epoch] = loss2xv loss2c_train[epoch] = loss2cv KLloss_train[epoch] = KLv MIloss_train[epoch] = MIv sibMIloss_train[epoch] = sibMIv pub_acc_train[epoch] = pub_accv sec_acc_train[epoch] = sec_accv # Validation if epoch % 10 == 9: pub_loss = 0 sec_loss = 0 e_val_loss = 0 d_val_loss = 0 loss2xv = 0 loss2cv = 0 KLv = 0 MIv = 0 sibMIv = 0 pub_accv = 0 sec_accv = 0 for i in range(int(FLAGS.test_dataset_size / FLAGS.batch_size)): feeds = get_feed(i, False, fergdata) pub_loss += sess.run(pub_dist, feeds) sec_loss += sess.run(sec_dist, feeds) e_val_loss += sess.run(loss1, feeds) d_val_loss += sess.run(loss2, feeds) zv, yhatv, chatv, meanv, stddevv, sec_pred = sess.run( [z, yhat, chat, mean, stddev, correct_pred], feeds) MItmp, sibMItmp, KLtmp, loss2xtmp, loss2ctmp, pub_acc_tmp, sec_acc_tmp = sess.run( [ I_c_cz, sibMI_c_cz, KLloss, loss2x, loss2c, pub_acc, sec_acc ], feeds) if (epoch >= FLAGS.max_epoch - 10): yhat_val.extend(sess.run(yhat, feeds)) #test_writer.add_summary(summary, i) pub_accv += pub_acc_tmp sec_accv += sec_acc_tmp KLv += KLtmp MIv += MItmp sibMIv += sibMItmp loss2xv += loss2xtmp loss2cv += loss2ctmp pub_loss /= int(FLAGS.test_dataset_size / FLAGS.batch_size) sec_loss /= int(FLAGS.test_dataset_size / FLAGS.batch_size) e_val_loss /= int(FLAGS.test_dataset_size / FLAGS.batch_size) d_val_loss /= int(FLAGS.test_dataset_size / FLAGS.batch_size) loss2xv /= int(FLAGS.test_dataset_size / FLAGS.batch_size) loss2cv /= int(FLAGS.test_dataset_size / FLAGS.batch_size) KLv /= int(FLAGS.test_dataset_size / FLAGS.batch_size) MIv /= int(FLAGS.test_dataset_size / FLAGS.batch_size) sibMIv /= int(FLAGS.test_dataset_size / FLAGS.batch_size) pub_accv /= int(FLAGS.test_dataset_size / FLAGS.batch_size) sec_accv /= int(FLAGS.test_dataset_size / FLAGS.batch_size) print('Test public loss at epoch %s: %s, public accuracy: %s' % (epoch, pub_loss, pub_accv)) print('Test private loss at epoch %s: %s, private accuracy: %s' % (epoch, sec_loss, sec_accv)) e_loss_val[epoch] = e_val_loss d_loss_val[epoch] = d_val_loss pub_dist_val[epoch] = pub_loss sec_dist_val[epoch] = sec_loss loss2x_val[epoch] = loss2xv loss2c_val[epoch] = loss2cv KLloss_val[epoch] = KLv MIloss_val[epoch] = MIv sibMIloss_val[epoch] = sibMIv pub_acc_val[epoch] = pub_accv sec_acc_val[epoch] = sec_accv if not (np.isnan(e_loss_value) or np.isnan(d_loss_value)): savepath = saver.save(sess, model_directory + '/ferg_privacy', global_step=epoch) print('Model saved at epoch %s, path is %s' % (epoch, savepath)) np.savez(os.path.join(model_directory, 'ferg_trainstats'), e_loss_train=e_loss_train, d_loss_train=d_loss_train, pub_dist_train=pub_dist_train, sec_dist_train=sec_dist_train, loss2x_train=loss2x_train, loss2c_train=loss2c_train, KLloss_train=KLloss_train, MIloss_train=MIloss_train, sibMIloss_train=sibMIloss_train, pub_acc_train=pub_acc_train, sec_acc_train=sec_acc_train, e_loss_val=e_loss_val, d_loss_val=d_loss_val, pub_dist_val=pub_dist_val, sec_dist_val=sec_dist_val, loss2x_val=loss2x_val, loss2c_val=loss2c_val, KLloss_val=KLloss_val, MIloss_val=MIloss_val, sibMIloss_val=sibMIloss_val, pub_acc_val=pub_acc_val, sec_acc_val=sec_acc_val, yhat_val=yhat_val) sess.close()
def train_mnist_discrim(prior, lossmetric="KL"): '''Train model to output transformation that prevents leaking private info using a discriminator to aid producing natural images ''' data_dir = os.path.join(FLAGS.working_directory, "data") mnist_dir = os.path.join(data_dir, "mnist") model_directory = os.path.join( mnist_dir, lossmetric + "discrim_privacy_checkpoints" + str(encode_coef)) input_tensor = tf.placeholder(tf.float32, [FLAGS.batch_size, FLAGS.input_size]) output_tensor = tf.placeholder(tf.float32, [FLAGS.batch_size, FLAGS.output_size]) private_tensor = tf.placeholder(tf.float32, [FLAGS.batch_size, FLAGS.private_size]) rawc_tensor = tf.placeholder(tf.float32, [FLAGS.batch_size]) prior_tensor = tf.constant(prior, tf.float32, [FLAGS.private_size]) #load data not necessary for mnist data mnist = input_data.read_data_sets(mnist_dir, one_hot=True) def get_feed(batch_no, training): if training: x, c = mnist.train.next_batch(FLAGS.batch_size) else: x, c = mnist.test.next_batch(FLAGS.batch_size) rawc = np.argmax(c, axis=1) return { input_tensor: x, output_tensor: x, private_tensor: c[:, :FLAGS.private_size], rawc_tensor: rawc } #instantiate model with pt.defaults_scope(activation_fn=tf.nn.relu, batch_normalize=True, learned_moments_update_rate=3e-4, variance_epsilon=1e-3, scale_after_normalization=True): with pt.defaults_scope(phase=pt.Phase.train): with tf.variable_scope("encoder") as scope: z = dvibcomp.privacy_encoder(input_tensor, private_tensor) encode_params = tf.trainable_variables() e_param_len = len(encode_params) with tf.variable_scope("decoder") as scope: xhat, chat, mean, stddev = dvibcomp.mnist_predictor(z) all_params = tf.trainable_variables() d_param_len = len(all_params) - e_param_len with tf.variable_scope("discrim") as scope: D1 = dvibcomp.mnist_discriminator( input_tensor) # positive samples with tf.variable_scope("discrim", reuse=True) as scope: D2 = dvibcomp.mnist_discriminator(xhat) # negative samples all_params = tf.trainable_variables() discrim_len = len(all_params) - (d_param_len + e_param_len) # Calculating losses _, KLloss = dvibloss.encoding_cost(xhat, chat, input_tensor, private_tensor, prior_tensor) loss2x, loss2c = dvibloss.recon_cost(xhat, chat, input_tensor, private_tensor, softmax=True) loss_g = dvibloss.get_gen_cost(D2) loss_d = dvibloss.get_discrim_cost(D1, D2) loss_vae = dvibloss.get_vae_cost(mean, stddev) # Record losses of MI approximation and sibson MI h_c, h_cz, _, _ = dvibloss.MI_approx(input_tensor, private_tensor, rawc_tensor, xhat, chat, z) I_c_cz = tf.abs(h_c - h_cz) # use alpha = 3 first, may be tuned sibMI_c_cz = dvibloss.sibsonMI_approx(z, chat, 3) # Compose losses if lossmetric == "KL": loss1 = encode_coef * loss_g + KLloss if lossmetric == "MI": loss1 = encode_coef * loss_g + I_c_cz if lossmetric == "sibMI": loss1 = encode_coef * loss_g + sibMI_c_cz loss2 = decode_coef * loss_g + loss2c loss3 = loss_d with tf.name_scope('pub_prediction'): with tf.name_scope('pub_distance'): pub_dist = tf.reduce_mean((xhat - output_tensor)**2) with tf.name_scope('sec_prediction'): with tf.name_scope('sec_distance'): sec_dist = tf.reduce_mean((chat - private_tensor)**2) #correct_pred = tf.less(tf.abs(chat - private_tensor), 0.5) correct_pred = tf.equal(tf.argmax(chat, axis=1), tf.argmax(private_tensor, axis=1)) sec_acc = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) optimizer = tf.train.AdamOptimizer(FLAGS.learning_rate, epsilon=1.0) e_train = pt.apply_optimizer( optimizer, losses=[loss1], regularize=True, include_marked=True, var_list=encode_params) # privatizer/encoder training op g_train = pt.apply_optimizer( optimizer, losses=[loss2], regularize=True, include_marked=True, var_list=all_params[e_param_len:]) # generator/decoder training op d_train = pt.apply_optimizer( optimizer, losses=[loss3], regularize=True, include_marked=True, var_list=all_params[e_param_len + d_param_len:]) # discriminator training op # Logging matrices e_loss_train = np.zeros(FLAGS.max_epoch) g_loss_train = np.zeros(FLAGS.max_epoch) d_loss_train = np.zeros(FLAGS.max_epoch) pub_dist_train = np.zeros(FLAGS.max_epoch) sec_dist_train = np.zeros(FLAGS.max_epoch) loss2x_train = np.zeros(FLAGS.max_epoch) loss2c_train = np.zeros(FLAGS.max_epoch) KLloss_train = np.zeros(FLAGS.max_epoch) MIloss_train = np.zeros(FLAGS.max_epoch) sibMIloss_train = np.zeros(FLAGS.max_epoch) sec_acc_train = np.zeros(FLAGS.max_epoch) e_loss_val = np.zeros(FLAGS.max_epoch) g_loss_val = np.zeros(FLAGS.max_epoch) d_loss_val = np.zeros(FLAGS.max_epoch) pub_dist_val = np.zeros(FLAGS.max_epoch) sec_dist_val = np.zeros(FLAGS.max_epoch) loss2x_val = np.zeros(FLAGS.max_epoch) loss2c_val = np.zeros(FLAGS.max_epoch) KLloss_val = np.zeros(FLAGS.max_epoch) MIloss_val = np.zeros(FLAGS.max_epoch) sibMIloss_val = np.zeros(FLAGS.max_epoch) sec_acc_val = np.zeros(FLAGS.max_epoch) xhat_val = [] # Tensorboard logging #tf.summary.scalar('KL', KLloss) #tf.summary.scalar('loss_x', loss2x) #tf.summary.scalar('loss_c', loss2c) #tf.summary.scalar('pub_dist', pub_dist) #tf.summary.scalar('sec_dist', sec_dist) init = tf.global_variables_initializer() saver = tf.train.Saver() # Config session for memory config = tf.ConfigProto() config.gpu_options.allow_growth = True #config.gpu_options.per_process_gpu_memory_fraction = 0.8 config.log_device_placement = False sess = tf.Session(config=config) sess.run(init) #merged = tf.summary.merge_all() #train_writer = tf.summary.FileWriter(FLAGS.summary_dir + '/train', sess.graph) #test_writer = tf.summary.FileWriter(FLAGS.summary_dir + '/test') for epoch in range(FLAGS.max_epoch): widgets = ["epoch #%d|" % epoch, Percentage(), Bar(), ETA()] pbar = ProgressBar(maxval=FLAGS.updates_per_epoch, widgets=widgets) pbar.start() pub_loss = 0 sec_loss = 0 sec_accv = 0 e_training_loss = 0 g_training_loss = 0 d_training_loss = 0 KLv = 0 MIv = 0 sibMIv = 0 loss2xv = 0 loss2cv = 0 #pdb.set_trace() for i in range(FLAGS.updates_per_epoch): pbar.update(i) feeds = get_feed(i, True) #zv, xhatv, chatv, meanv, stddevv, sec_pred = sess.run([z, xhat, chat, mean, stddev, correct_pred], feeds) pub_tmp, sec_tmp, sec_acc_tmp, KLtmp, MItmp, sibMItmp, loss2xtmp, loss2ctmp, loss3tmp = sess.run( [ pub_dist, sec_dist, sec_acc, KLloss, I_c_cz, sibMI_c_cz, loss2x, loss2c, loss_vae ], feeds) #_, e_loss_value, _, g_loss_value, _, d_loss_value = sess.run([e_train, loss1, g_train, loss2, d_train, loss3], feeds) _, e_loss_value = sess.run([e_train, loss1], feeds) _, g_loss_value = sess.run([g_train, loss2], feeds) _, d_loss_value = sess.run([d_train, loss3], feeds) if (np.isnan(e_loss_value) or np.isnan(g_loss_value) or np.isnan(d_loss_value)): pdb.set_trace() break #train_writer.add_summary(summary, i) e_training_loss += e_loss_value g_training_loss += g_loss_value d_training_loss += d_loss_value pub_loss += pub_tmp sec_loss += sec_tmp sec_accv += sec_acc_tmp KLv += KLtmp MIv += MItmp sibMIv += sibMItmp loss2xv += loss2xtmp loss2cv += loss2ctmp e_training_loss = e_training_loss / \ (FLAGS.updates_per_epoch) g_training_loss = g_training_loss / \ (FLAGS.updates_per_epoch) d_training_loss = d_training_loss / \ (FLAGS.updates_per_epoch) pub_loss /= (FLAGS.updates_per_epoch) sec_loss /= (FLAGS.updates_per_epoch) sec_accv /= (FLAGS.updates_per_epoch) loss2xv /= (FLAGS.updates_per_epoch) loss2cv /= (FLAGS.updates_per_epoch) KLv /= (FLAGS.updates_per_epoch) MIv /= (FLAGS.updates_per_epoch) sibMIv /= (FLAGS.updates_per_epoch) print("Loss for E %f, for G %f, for D %f" % (e_training_loss, g_training_loss, d_training_loss)) print('Training public loss at epoch %s: %s' % (epoch, pub_loss)) print('Training private loss at epoch %s: %s, private accuracy: %s' % (epoch, sec_loss, sec_accv)) e_loss_train[epoch] = e_training_loss g_loss_train[epoch] = g_training_loss d_loss_train[epoch] = d_training_loss pub_dist_train[epoch] = pub_loss sec_dist_train[epoch] = sec_loss loss2x_train[epoch] = loss2xv loss2c_train[epoch] = loss2cv KLloss_train[epoch] = KLv MIloss_train[epoch] = MIv sibMIloss_train[epoch] = sibMIv sec_acc_train[epoch] = sec_accv # Forced Garbage Collection gc.collect() # Validation if epoch % 10 == 9: pub_loss = 0 sec_loss = 0 e_val_loss = 0 g_val_loss = 0 d_val_loss = 0 loss2xv = 0 loss2cv = 0 KLv = 0 MIv = 0 sec_accv = 0 for i in range(int(FLAGS.test_dataset_size / FLAGS.batch_size)): feeds = get_feed(i, False) e_val_tmp, g_val_tmp, d_val_tmp, pub_loss, sec_loss, MItmp, sibMItmp, KLtmp, loss2xtmp, loss2ctmp, sec_acc_tmp = sess.run( [ loss1, loss2, loss3, pub_dist, sec_dist, I_c_cz, sibMI_c_cz, KLloss, loss2x, loss2c, sec_acc ], feeds) if (epoch >= FLAGS.max_epoch - 10): xhat_val.extend(sess.run(xhat, feeds)) #test_writer.add_summary(summary, i) e_val_loss += e_val_tmp g_val_loss += g_val_tmp d_val_loss += d_val_tmp sec_accv += sec_acc_tmp KLv += KLtmp MIv += MItmp sibMIv += sibMItmp loss2xv += loss2xtmp loss2cv += loss2ctmp pub_loss /= int(FLAGS.test_dataset_size / FLAGS.batch_size) sec_loss /= int(FLAGS.test_dataset_size / FLAGS.batch_size) e_val_loss /= int(FLAGS.test_dataset_size / FLAGS.batch_size) g_val_loss /= int(FLAGS.test_dataset_size / FLAGS.batch_size) d_val_loss /= int(FLAGS.test_dataset_size / FLAGS.batch_size) loss2xv /= int(FLAGS.test_dataset_size / FLAGS.batch_size) loss2cv /= int(FLAGS.test_dataset_size / FLAGS.batch_size) KLv /= int(FLAGS.test_dataset_size / FLAGS.batch_size) MIv /= int(FLAGS.test_dataset_size / FLAGS.batch_size) sibMIv /= int(FLAGS.test_dataset_size / FLAGS.batch_size) sec_accv /= int(FLAGS.test_dataset_size / FLAGS.batch_size) print('Test public loss at epoch %s: %s' % (epoch, pub_loss)) print('Test private loss at epoch %s: %s' % (epoch, sec_loss)) e_loss_val[epoch] = e_val_loss g_loss_val[epoch] = g_val_loss d_loss_val[epoch] = d_val_loss pub_dist_val[epoch] = pub_loss sec_dist_val[epoch] = sec_loss loss2x_val[epoch] = loss2xv loss2c_val[epoch] = loss2cv KLloss_val[epoch] = KLv MIloss_val[epoch] = MIv sibMIloss_val[epoch] = sibMIv sec_acc_val[epoch] = sec_accv if not (np.isnan(e_val_loss) or np.isnan(g_val_loss) or np.isnan(d_val_loss)): savepath = saver.save(sess, model_directory + '/mnist_privacy', global_step=epoch) print('Model saved at epoch %s, path is %s' % (epoch, savepath)) gc.collect() np.savez(os.path.join(model_directory, 'synth_trainstats'), e_loss_train=e_loss_train, g_loss_train=g_loss_train, d_loss_train=d_loss_train, pub_dist_train=pub_dist_train, sec_dist_train=sec_dist_train, loss2x_train=loss2x_train, loss2c_train=loss2c_train, KLloss_train=KLloss_train, MIloss_train=MIloss_train, sibMIloss_train=sibMIloss_train, sec_acc_train=sec_acc_train, e_loss_val=e_loss_val, g_loss_val=g_loss_val, d_loss_val=d_loss_val, pub_dist_val=pub_dist_val, sec_dist_val=sec_dist_val, loss2x_val=loss2x_val, loss2c_val=loss2c_val, KLloss_val=KLloss_val, MIloss_val=MIloss_val, sibMIloss_val=sibMIloss_val, sec_acc_val=sec_acc_val, xhat_val=xhat_val) sess.close()
def train_mnist(prior, lossmetric="sibMI", order=20, D=0.02, xmetric="L2", K_iters=20): '''Train model to output transformation that prevents leaking private info ''' # Set random seed for this model tf.set_random_seed(515319) data_dir = os.path.join(FLAGS.working_directory, "data") mnist_dir = os.path.join(data_dir, "mnist") model_directory = os.path.join( mnist_dir, lossmetric + "privacy_checkpoints" + str(encode_coef) + "_" + str(decode_coef) + "_D" + str(D) + "_order" + str(order) + "_xmetric" + xmetric) input_tensor = tf.placeholder(tf.float32, [FLAGS.batch_size, FLAGS.input_size]) output_tensor = tf.placeholder(tf.float32, [FLAGS.batch_size, FLAGS.output_size]) private_tensor = tf.placeholder(tf.float32, [FLAGS.batch_size, FLAGS.private_size]) prior_tensor = tf.constant(prior, tf.float32, [FLAGS.private_size]) rawc_tensor = tf.placeholder(tf.float32, [FLAGS.batch_size]) rou_tensor = tf.placeholder(tf.float32) D_tensor = tf.placeholder(tf.float32) #load data not necessary for mnist data, formatted as vectors of real values between 0 and 1 mnist = input_data.read_data_sets(mnist_dir, one_hot=True) def get_feed(batch_no, training): if training: x, c = mnist.train.next_batch(FLAGS.batch_size) else: x, c = mnist.test.next_batch(FLAGS.batch_size) rawc = np.argmax(c, axis=1) return { input_tensor: x, output_tensor: x, private_tensor: c[:, :FLAGS.private_size], rawc_tensor: rawc } #instantiate model with pt.defaults_scope(activation_fn=tf.nn.relu, batch_normalize=True, learned_moments_update_rate=3e-4, variance_epsilon=1e-3, scale_after_normalization=True): with pt.defaults_scope(phase=pt.Phase.train): with tf.variable_scope("encoder") as scope: z = dvibcomp.privacy_encoder(input_tensor, private_tensor) encode_params = tf.trainable_variables() e_param_len = len(encode_params) with tf.variable_scope("decoder") as scope: xhat, chat, mean, stddev = dvibcomp.mnist_predictor(z) all_params = tf.trainable_variables() d_param_len = len(all_params) - e_param_len # Calculating losses _, KLloss = dvibloss.encoding_cost(xhat, chat, input_tensor, private_tensor, prior_tensor, xmetric=xmetric, independent=False) loss2x, loss2c = dvibloss.recon_cost(xhat, chat, input_tensor, private_tensor, softmax=True, xmetric=xmetric) # Record losses of MI approximation and sibson MI h_c, h_cz, _ = dvibloss.MI_approx(input_tensor, private_tensor, rawc_tensor, xhat, chat, z) I_c_cz = tf.abs(h_c - h_cz) # Ialpha(Z;C) sibMI_c_cz = dvibloss.sibsonMI_approx(z, chat, order, independent=False) # Ialpha(C;Z) sibMI_c_z = dvibloss.sibsonMI_c_z(z, chat, prior_tensor, order, independent=False) # Distortion constraint lossdist = rou_tensor * tf.maximum(0.0, loss2x - D_tensor) # Compose losses if lossmetric == "KL": loss1 = encode_coef * lossdist + KLloss if lossmetric == "MI": loss1 = encode_coef * lossdist + I_c_cz if lossmetric == "sibMI": loss1 = encode_coef * lossdist + sibMI_c_z loss2 = decode_coef * lossdist + loss2c loss3 = dvibloss.get_vae_cost(mean, stddev) with tf.name_scope('pub_prediction'): with tf.name_scope('pub_distance'): pub_dist = tf.reduce_mean((xhat - output_tensor)**2) with tf.name_scope('sec_prediction'): with tf.name_scope('sec_distance'): sec_dist = tf.reduce_mean((chat - private_tensor)**2) #correct_pred = tf.less(tf.abs(chat - private_tensor), 0.5) correct_pred = tf.equal(tf.argmax(chat, axis=1), tf.argmax(private_tensor, axis=1)) sec_acc = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) optimizer = tf.train.AdamOptimizer(FLAGS.learning_rate, epsilon=1.0) e_train = pt.apply_optimizer(optimizer, losses=[loss1], regularize=True, include_marked=True, var_list=encode_params) d_train = pt.apply_optimizer(optimizer, losses=[loss2], regularize=True, include_marked=True, var_list=all_params[e_param_len:]) # Logging matrices e_loss_train = np.zeros(FLAGS.max_epoch) d_loss_train = np.zeros(FLAGS.max_epoch) pub_dist_train = np.zeros(FLAGS.max_epoch) sec_dist_train = np.zeros(FLAGS.max_epoch) loss2x_train = np.zeros(FLAGS.max_epoch) loss2c_train = np.zeros(FLAGS.max_epoch) KLloss_train = np.zeros(FLAGS.max_epoch) MIloss_train = np.zeros(FLAGS.max_epoch) sibMIloss_train = np.zeros(FLAGS.max_epoch) sibMIcz_train = np.zeros(FLAGS.max_epoch) sec_acc_train = np.zeros(FLAGS.max_epoch) e_loss_val = np.zeros(FLAGS.max_epoch) d_loss_val = np.zeros(FLAGS.max_epoch) pub_dist_val = np.zeros(FLAGS.max_epoch) sec_dist_val = np.zeros(FLAGS.max_epoch) loss2x_val = np.zeros(FLAGS.max_epoch) loss2c_val = np.zeros(FLAGS.max_epoch) KLloss_val = np.zeros(FLAGS.max_epoch) MIloss_val = np.zeros(FLAGS.max_epoch) sibMIloss_val = np.zeros(FLAGS.max_epoch) sibMIcz_val = np.zeros(FLAGS.max_epoch) sec_acc_val = np.zeros(FLAGS.max_epoch) xhat_val = [] # Tensorboard logging #tf.summary.scalar('e_loss', loss1) #tf.summary.scalar('KL', KLloss) #tf.summary.scalar('loss_x', loss2x) #tf.summary.scalar('loss_c', loss2c) #tf.summary.scalar('pub_dist', pub_dist) #tf.summary.scalar('sec_dist', sec_dist) # Rou tensor values, penalty parameter for the distortion constraint rou_values = np.linspace(1, 1000, FLAGS.max_epoch) init = tf.global_variables_initializer() saver = tf.train.Saver() # Config session for memory config = tf.ConfigProto() #config.gpu_options.allow_growth = True #config.gpu_options.per_process_gpu_memory_fraction = 0.8 config.log_device_placement = False sess = tf.Session(config=config) sess.run(init) #merged = tf.summary.merge_all() #train_writer = tf.summary.FileWriter(FLAGS.summary_dir + '/train', sess.graph) #test_writer = tf.summary.FileWriter(FLAGS.summary_dir + '/test') #Attempt to restart from last checkpt checkpt = tf.train.latest_checkpoint(model_directory) if checkpt != None and FLAGS.restore_model == True: saver.restore(sess, checkpt) print("Restored model from checkpoint %s" % (checkpt)) for epoch in range(FLAGS.max_epoch): widgets = ["epoch #%d|" % epoch, Percentage(), Bar(), ETA()] pbar = ProgressBar(maxval=FLAGS.updates_per_epoch, widgets=widgets) pbar.start() pub_loss = 0 sec_loss = 0 sec_accv = 0 e_training_loss = 0 d_training_loss = 0 KLv = 0 MIv = 0 sibMIv = 0 sibMIczv = 0 loss2xv = 0 loss2cv = 0 #pdb.set_trace() #if epoch == FLAGS.max_epoch-1: #pdb.set_trace() for i in range(FLAGS.updates_per_epoch): pbar.update(i) feeds = get_feed(i, True) feeds[rou_tensor] = rou_values[epoch] feeds[D_tensor] = D #zv, xhatv, chatv, meanv, stddevv, sec_pred = sess.run([z, xhat, chat, mean, stddev, correct_pred], feeds) pub_tmp, sec_tmp, sec_acc_tmp = sess.run( [pub_dist, sec_dist, sec_acc], feeds) MItmp, sibMItmp, sibMIcztmp, KLtmp, loss2xtmp, loss2ctmp, loss3tmp = sess.run( [I_c_cz, sibMI_c_cz, sibMI_c_z, KLloss, loss2x, loss2c, loss3], feeds) _, e_loss_value = sess.run([e_train, loss1], feeds) d_inner = 0 for j in range(K_iters): _, d_inner = sess.run([d_train, loss2], feeds) d_loss_value = d_inner / K_iters if (np.isnan(e_loss_value) or np.isnan(d_loss_value)): #pdb.set_trace() break #train_writer.add_summary(summary, i) e_training_loss += e_loss_value d_training_loss += d_loss_value pub_loss += pub_tmp sec_loss += sec_tmp sec_accv += sec_acc_tmp KLv += KLtmp MIv += MItmp sibMIv += sibMItmp sibMIczv += sibMIcztmp loss2xv += loss2xtmp loss2cv += loss2ctmp e_training_loss = e_training_loss / \ (FLAGS.updates_per_epoch) d_training_loss = d_training_loss / \ (FLAGS.updates_per_epoch) pub_loss /= (FLAGS.updates_per_epoch) sec_loss /= (FLAGS.updates_per_epoch) sec_accv /= (FLAGS.updates_per_epoch) loss2xv /= (FLAGS.updates_per_epoch) loss2cv /= (FLAGS.updates_per_epoch) KLv /= (FLAGS.updates_per_epoch) MIv /= (FLAGS.updates_per_epoch) sibMIv /= (FLAGS.updates_per_epoch) sibMIczv /= (FLAGS.updates_per_epoch) print("Loss for E %f, and for D %f" % (e_training_loss, d_training_loss)) print('Training public loss at epoch %s: %s' % (epoch, pub_loss)) print('Training private loss at epoch %s: %s, private accuracy: %s' % (epoch, sec_loss, sec_accv)) print( 'Training KL loss at epoch %s: %s, sibMI(Z;C): %s, sibMI(C;Z): %s, loss2x: %s' % (epoch, KLv, sibMIv, sibMIczv, loss2xv)) if sibMIv < 0: print("sibson MI calculation breakdown: %s" % (sibMIv)) savepath = saver.save(sess, model_directory + '/mnist_privacy', global_step=epoch) print('Model saved at epoch %s, path is %s' % (epoch, savepath)) np.savez(os.path.join(model_directory, 'synth_trainstats'), e_loss_train=e_loss_train, d_loss_train=d_loss_train, pub_dist_train=pub_dist_train, sec_dist_train=sec_dist_train, loss2x_train=loss2x_train, loss2c_train=loss2c_train, KLloss_train=KLloss_train, MIloss_train=MIloss_train, sibMIloss_train=sibMIloss_train, sibMIcz_train=sibMIcz_train, sec_acc_train=sec_acc_train, e_loss_val=e_loss_val, d_loss_val=d_loss_val, pub_dist_val=pub_dist_val, sec_dist_val=sec_dist_val, loss2x_val=loss2x_val, loss2c_val=loss2c_val, KLloss_val=KLloss_val, MIloss_val=MIloss_val, sibMIloss_val=sibMIloss_val, sibMIcz_val=sibMIcz_val, sec_acc_val=sec_acc_val, xhat_val=xhat_val) break e_loss_train[epoch] = e_training_loss d_loss_train[epoch] = d_training_loss pub_dist_train[epoch] = pub_loss sec_dist_train[epoch] = sec_loss loss2x_train[epoch] = loss2xv loss2c_train[epoch] = loss2cv KLloss_train[epoch] = KLv MIloss_train[epoch] = MIv sibMIloss_train[epoch] = sibMIv sibMIcz_train[epoch] = sibMIczv sec_acc_train[epoch] = sec_accv # Validation if epoch % 10 == 9: pub_loss = 0 sec_loss = 0 e_val_loss = 0 d_val_loss = 0 loss2xv = 0 loss2cv = 0 KLv = 0 MIv = 0 sibMIv = 0 sibMIczv = 0 sec_accv = 0 for i in range(int(FLAGS.test_dataset_size / FLAGS.batch_size)): feeds = get_feed(i, False) feeds[rou_tensor] = rou_values[epoch] feeds[D_tensor] = D pub_loss += sess.run(pub_dist, feeds) sec_loss += sess.run(sec_dist, feeds) e_val_loss += sess.run(loss1, feeds) d_val_loss += sess.run(loss2, feeds) zv, xhatv, chatv, meanv, stddevv, sec_pred = sess.run( [z, xhat, chat, mean, stddev, correct_pred], feeds) MItmp, sibMItmp, sibMIcztmp, KLtmp, loss2xtmp, loss2ctmp, sec_acc_tmp = sess.run( [ I_c_cz, sibMI_c_cz, sibMI_c_z, KLloss, loss2x, loss2c, sec_acc ], feeds) if (epoch >= FLAGS.max_epoch - 10): xhat_val.extend(sess.run(xhat, feeds)) #test_writer.add_summary(summary, i) sec_accv += sec_acc_tmp KLv += KLtmp MIv += MItmp sibMIv += sibMItmp sibMIczv += sibMIcztmp loss2xv += loss2xtmp loss2cv += loss2ctmp pub_loss /= int(FLAGS.test_dataset_size / FLAGS.batch_size) sec_loss /= int(FLAGS.test_dataset_size / FLAGS.batch_size) e_val_loss /= int(FLAGS.test_dataset_size / FLAGS.batch_size) d_val_loss /= int(FLAGS.test_dataset_size / FLAGS.batch_size) loss2xv /= int(FLAGS.test_dataset_size / FLAGS.batch_size) loss2cv /= int(FLAGS.test_dataset_size / FLAGS.batch_size) KLv /= int(FLAGS.test_dataset_size / FLAGS.batch_size) MIv /= int(FLAGS.test_dataset_size / FLAGS.batch_size) sibMIv /= int(FLAGS.test_dataset_size / FLAGS.batch_size) sibMIczv /= int(FLAGS.test_dataset_size / FLAGS.batch_size) sec_accv /= int(FLAGS.test_dataset_size / FLAGS.batch_size) print('Test public loss at epoch %s: %s' % (epoch, pub_loss)) print('Test private loss at epoch %s: %s' % (epoch, sec_loss)) e_loss_val[epoch] = e_val_loss d_loss_val[epoch] = d_val_loss pub_dist_val[epoch] = pub_loss sec_dist_val[epoch] = sec_loss loss2x_val[epoch] = loss2xv loss2c_val[epoch] = loss2cv KLloss_val[epoch] = KLv MIloss_val[epoch] = MIv sibMIloss_val[epoch] = sibMIv sibMIcz_val[epoch] = sibMIczv sec_acc_val[epoch] = sec_accv if not (np.isnan(e_loss_value) or np.isnan(d_loss_value)): savepath = saver.save(sess, model_directory + '/mnist_privacy', global_step=epoch) print('Model saved at epoch %s, path is %s' % (epoch, savepath)) np.savez(os.path.join(model_directory, 'synth_trainstats'), e_loss_train=e_loss_train, d_loss_train=d_loss_train, pub_dist_train=pub_dist_train, sec_dist_train=sec_dist_train, loss2x_train=loss2x_train, loss2c_train=loss2c_train, KLloss_train=KLloss_train, MIloss_train=MIloss_train, sibMIloss_train=sibMIloss_train, sibMIcz_train=sibMIcz_train, sec_acc_train=sec_acc_train, e_loss_val=e_loss_val, d_loss_val=d_loss_val, pub_dist_val=pub_dist_val, sec_dist_val=sec_dist_val, loss2x_val=loss2x_val, loss2c_val=loss2c_val, KLloss_val=KLloss_val, MIloss_val=MIloss_val, sibMIloss_val=sibMIloss_val, sibMIcz_val=sibMIcz_val, sec_acc_val=sec_acc_val, xhat_val=xhat_val) sess.close()
def train_2gauss(prior, lossmetric="KL"): '''Train model to output transformation that prevents leaking private info ''' data_dir = os.path.join(FLAGS.working_directory, "data") synth_dir = os.path.join(data_dir, "synthetic") model_directory = os.path.join( synth_dir, lossmetric + "privacy_checkpoints" + str(encode_coef) + "_" + str(decode_coef)) input_tensor = tf.placeholder(tf.float32, [FLAGS.batch_size, FLAGS.input_size]) output_tensor = tf.placeholder(tf.float32, [FLAGS.batch_size, FLAGS.output_size]) private_tensor = tf.placeholder(tf.float32, [FLAGS.batch_size, FLAGS.private_size]) prior_tensor = tf.constant(prior, tf.float32, [FLAGS.private_size]) rawc_tensor = tf.placeholder(tf.float32, [FLAGS.batch_size]) #load data data = np.load(synth_dir + '/1d2gaussian.npz') xs = data['x'] cs = data['c'] def get_feed(batch_no, training): offset = FLAGS.dataset_size if training == False else 0 x = xs[offset + FLAGS.batch_size * batch_no:offset + FLAGS.batch_size * (batch_no + 1)] pow_x = np.array([x, x**2, x**3]).transpose() x = np.array(x).reshape(FLAGS.batch_size, 1) c = cs[offset + FLAGS.batch_size * batch_no:offset + FLAGS.batch_size * (batch_no + 1)] c = np.array(c).reshape(FLAGS.batch_size, 1) return { input_tensor: pow_x, output_tensor: x, private_tensor: c, rawc_tensor: c.reshape(FLAGS.batch_size) } #instantiate model with pt.defaults_scope(activation_fn=tf.nn.relu, batch_normalize=True, learned_moments_update_rate=3e-4, variance_epsilon=1e-3, scale_after_normalization=True): with pt.defaults_scope(phase=pt.Phase.train): with tf.variable_scope("encoder") as scope: z = dvibcomp.synth_encoder(input_tensor, private_tensor, FLAGS.hidden_size) encode_params = tf.trainable_variables() e_param_len = len(encode_params) with tf.variable_scope("decoder") as scope: xhat, chat, mean, stddev = dvibcomp.synth_predictor(z) all_params = tf.trainable_variables() d_param_len = len(all_params) - e_param_len loss1, KLloss = dvibloss.encoding_cost(xhat, chat, input_tensor, private_tensor, prior_tensor) loss2x, loss2c = dvibloss.recon_cost(xhat, chat, output_tensor, private_tensor) # Experiment with alternative approximation for MI h_c, h_cz, l_c, e_x = dvibloss.MI_approx(input_tensor, private_tensor, rawc_tensor, xhat, chat, z) I_c_cz = tf.abs(h_c - h_cz) # use alpha=3, may be tuned, calculate Sibson MI sibMI_c_cz = dvibloss.sibsonMI_approx(z, chat, 3) # compose losses if lossmetric == "KL": loss1 = loss1 * encode_coef + KLloss if lossmetric == "MI": loss1 = loss1 * encode_coef + I_c_cz if lossmetric == "sibMI": loss1 = loss1 * encode_coef + sibMI_c_cz loss2 = loss2x * decode_coef + loss2c loss3 = dvibloss.get_vae_cost(mean, stddev) #loss1 = loss1 + encode_coef * loss3 with tf.name_scope('pub_prediction'): with tf.name_scope('pub_distance'): pub_dist = tf.reduce_mean((xhat - output_tensor)**2) with tf.name_scope('sec_prediction'): with tf.name_scope('sec_distance'): sec_dist = tf.reduce_mean((chat - private_tensor)**2) correct_pred = tf.less(tf.abs(chat - private_tensor), 0.5) sec_acc = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) optimizer = tf.train.AdamOptimizer(FLAGS.learning_rate, epsilon=1.0) e_train = pt.apply_optimizer(optimizer, losses=[loss1], regularize=True, include_marked=True, var_list=encode_params) d_train = pt.apply_optimizer(optimizer, losses=[loss2], regularize=True, include_marked=True, var_list=all_params[e_param_len:]) # Logging matrices e_loss_train = np.zeros(FLAGS.max_epoch) d_loss_train = np.zeros(FLAGS.max_epoch) pub_dist_train = np.zeros(FLAGS.max_epoch) sec_dist_train = np.zeros(FLAGS.max_epoch) loss2x_train = np.zeros(FLAGS.max_epoch) loss2c_train = np.zeros(FLAGS.max_epoch) KLloss_train = np.zeros(FLAGS.max_epoch) MIloss_train = np.zeros(FLAGS.max_epoch) sec_acc_train = np.zeros(FLAGS.max_epoch) e_loss_val = np.zeros(FLAGS.max_epoch) d_loss_val = np.zeros(FLAGS.max_epoch) pub_dist_val = np.zeros(FLAGS.max_epoch) sec_dist_val = np.zeros(FLAGS.max_epoch) loss2x_val = np.zeros(FLAGS.max_epoch) loss2c_val = np.zeros(FLAGS.max_epoch) KLloss_val = np.zeros(FLAGS.max_epoch) MIloss_val = np.zeros(FLAGS.max_epoch) sec_acc_val = np.zeros(FLAGS.max_epoch) xhat_val = [] # Tensorboard logging tf.summary.scalar('e_loss', loss1) tf.summary.scalar('KL', KLloss) tf.summary.scalar('loss_x', loss2x) tf.summary.scalar('loss_c', loss2c) tf.summary.scalar('pub_dist', pub_dist) tf.summary.scalar('sec_dist', sec_dist) init = tf.global_variables_initializer() saver = tf.train.Saver() # Config session for memory config = tf.ConfigProto() #config.gpu_options.allow_growth = True #config.gpu_options.per_process_gpu_memory_fraction = 0.8 config.log_device_placement = False sess = tf.Session(config=config) sess.run(init) merged = tf.summary.merge_all() train_writer = tf.summary.FileWriter(FLAGS.summary_dir + '/train', sess.graph) test_writer = tf.summary.FileWriter(FLAGS.summary_dir + '/test') for epoch in range(FLAGS.max_epoch): widgets = ["epoch #%d|" % epoch, Percentage(), Bar(), ETA()] pbar = ProgressBar(maxval=FLAGS.updates_per_epoch, widgets=widgets) pbar.start() pub_loss = 0 sec_loss = 0 sec_accv = 0 e_training_loss = 0 d_training_loss = 0 KLv = 0 MIv = 0 loss2xv = 0 loss2cv = 0 #pdb.set_trace() for i in range(FLAGS.updates_per_epoch): pbar.update(i) feeds = get_feed(i, True) zv, xhatv, chatv, meanv, stddevv, sec_pred = sess.run( [z, xhat, chat, mean, stddev, correct_pred], feeds) pub_tmp, sec_tmp, sec_acc_tmp = sess.run( [pub_dist, sec_dist, sec_acc], feeds) _, e_loss_value = sess.run([e_train, loss1], feeds) _, d_loss_value = sess.run([d_train, loss2], feeds) MItmp, KLtmp, loss2xtmp, loss2ctmp, loss3tmp = sess.run( [I_c_cz, KLloss, loss2x, loss2c, loss3], feeds) if (np.isnan(e_loss_value) or np.isnan(d_loss_value)): pdb.set_trace() break #train_writer.add_summary(summary, i) e_training_loss += e_loss_value d_training_loss += d_loss_value pub_loss += pub_tmp sec_loss += sec_tmp sec_accv += sec_acc_tmp KLv += KLtmp MIv += MItmp loss2xv += loss2xtmp loss2cv += loss2ctmp e_training_loss = e_training_loss / \ (FLAGS.updates_per_epoch) d_training_loss = d_training_loss / \ (FLAGS.updates_per_epoch) pub_loss /= (FLAGS.updates_per_epoch) sec_loss /= (FLAGS.updates_per_epoch) sec_accv /= (FLAGS.updates_per_epoch) loss2xv /= (FLAGS.updates_per_epoch) loss2cv /= (FLAGS.updates_per_epoch) KLv /= (FLAGS.updates_per_epoch) MIv /= (FLAGS.updates_per_epoch) print("Loss for E %f, and for D %f" % (e_training_loss, d_training_loss)) print('Training public loss at epoch %s: %s' % (epoch, pub_loss)) print('Training private loss at epoch %s: %s, private accuracy: %s' % (epoch, sec_loss, sec_accv)) e_loss_train[epoch] = e_training_loss d_loss_train[epoch] = d_training_loss pub_dist_train[epoch] = pub_loss sec_dist_train[epoch] = sec_loss loss2x_train[epoch] = loss2xv loss2c_train[epoch] = loss2cv KLloss_train[epoch] = KLv MIloss_train[epoch] = MIv sec_acc_train[epoch] = sec_accv # Validation if epoch % 10 == 9: pub_loss = 0 sec_loss = 0 e_val_loss = 0 d_val_loss = 0 loss2xv = 0 loss2cv = 0 KLv = 0 MIv = 0 sec_accv = 0 for i in range(int(FLAGS.test_dataset_size / FLAGS.batch_size)): feeds = get_feed(i, False) pub_loss += sess.run(pub_dist, feeds) sec_loss += sess.run(sec_dist, feeds) e_val_loss += sess.run(loss1, feeds) d_val_loss += sess.run(loss2, feeds) MItmp, KLtmp, loss2xtmp, loss2ctmp, sec_acc_tmp = sess.run( [I_c_cz, KLloss, loss2x, loss2c, sec_acc], feeds) if (epoch >= FLAGS.max_epoch - 10): xhat_val.extend(sess.run(xhat, feeds)) #test_writer.add_summary(summary, i) sec_accv += sec_acc_tmp KLv += KLtmp MIv += MItmp loss2xv += loss2xtmp loss2cv += loss2ctmp pub_loss /= int(FLAGS.test_dataset_size / FLAGS.batch_size) sec_loss /= int(FLAGS.test_dataset_size / FLAGS.batch_size) e_val_loss /= int(FLAGS.test_dataset_size / FLAGS.batch_size) d_val_loss /= int(FLAGS.test_dataset_size / FLAGS.batch_size) loss2xv /= int(FLAGS.test_dataset_size / FLAGS.batch_size) loss2cv /= int(FLAGS.test_dataset_size / FLAGS.batch_size) KLv /= int(FLAGS.test_dataset_size / FLAGS.batch_size) KLv /= int(FLAGS.test_dataset_size / FLAGS.batch_size) sec_accv /= int(FLAGS.test_dataset_size / FLAGS.batch_size) print('Test public loss at epoch %s: %s' % (epoch, pub_loss)) print('Test private loss at epoch %s: %s' % (epoch, sec_loss)) e_loss_val[epoch] = e_val_loss d_loss_val[epoch] = d_val_loss pub_dist_val[epoch] = pub_loss sec_dist_val[epoch] = sec_loss loss2x_val[epoch] = loss2xv loss2c_val[epoch] = loss2cv KLloss_val[epoch] = KLv MIloss_val[epoch] = MIv sec_acc_val[epoch] = sec_accv if not (np.isnan(e_loss_value) or np.isnan(d_loss_value)): savepath = saver.save(sess, model_directory + '/synth_privacy', global_step=epoch) print('Model saved at epoch %s, path is %s' % (epoch, savepath)) np.savez(os.path.join(model_directory, 'synth_trainstats'), e_loss_train=e_loss_train, d_loss_train=d_loss_train, pub_dist_train=pub_dist_train, sec_dist_train=sec_dist_train, loss2x_train=loss2x_train, loss2c_train=loss2c_train, KLloss_train=KLloss_train, MIloss_train=MIloss_train, sec_acc_train=sec_acc_train, e_loss_val=e_loss_val, d_loss_val=d_loss_val, pub_dist_val=pub_dist_val, sec_dist_val=sec_dist_val, loss2x_val=loss2x_val, loss2c_val=loss2c_val, KLloss_val=KLloss_val, MIloss_val=MIloss_val, sec_acc_val=sec_acc_val, xhat_val=xhat_val) sess.close() return
def train_gauss_discrim(prior): '''Train model to output transformation that prevents leaking private info, with weighted vector input data input: prior [1xM] probabilities of each class label in the dataset ''' FLAGS.dataset_size = 10000 FLAGS.test_dataset_size = 5000 FLAGS.updates_per_epoch = int(FLAGS.dataset_size / FLAGS.batch_size) FLAGS.input_size = 10 FLAGS.z_size = 40 FLAGS.output_size = 10 FLAGS.private_size = 10 FLAGS.hidden_size = 100 data_dir = os.path.join(FLAGS.working_directory, "data") synth_dir = os.path.join(data_dir, "synthetic_weighted") # Change model directory for logging purposes model_directory = os.path.join( synth_dir, "discrim_MI_privacy_checkpoints" + str(encode_coef) + "_" + str(decode_coef)) input_tensor = tf.placeholder(tf.float32, [FLAGS.batch_size, FLAGS.input_size]) output_tensor = tf.placeholder(tf.float32, [FLAGS.batch_size, FLAGS.output_size]) private_tensor = tf.placeholder(tf.float32, [FLAGS.batch_size, FLAGS.private_size]) rawc_tensor = tf.placeholder(tf.float32, [FLAGS.batch_size]) prior_tensor = tf.constant(prior, tf.float32, [FLAGS.private_size]) #load data data = np.load(synth_dir + '/weightedgaussian.npz') xs = data['x'] cs = data['c'] #convert class labels to one hot encoding onehot_cs = np.eye(np.max(cs) + 1)[cs] def get_feed(batch_no, training): offset = FLAGS.dataset_size if training == False else 0 x = xs[offset + FLAGS.batch_size * batch_no:offset + FLAGS.batch_size * (batch_no + 1)] onehot_c = onehot_cs[offset + FLAGS.batch_size * batch_no:offset + FLAGS.batch_size * (batch_no + 1)] c = cs[offset + FLAGS.batch_size * batch_no:offset + FLAGS.batch_size * (batch_no + 1)] #if x.shape==(0, 10): # pdb.set_trace() return { input_tensor: x, output_tensor: x, private_tensor: onehot_c, rawc_tensor: c } #instantiate model with pt.defaults_scope(activation_fn=tf.nn.relu, batch_normalize=True, learned_moments_update_rate=3e-4, variance_epsilon=1e-3, scale_after_normalization=True): with pt.defaults_scope(phase=pt.Phase.train): with tf.variable_scope("encoder") as scope: z = dvibcomp.synth_encoder(input_tensor, private_tensor, FLAGS.hidden_size) encode_params = tf.trainable_variables() e_param_len = len(encode_params) with tf.variable_scope("decoder") as scope: xhat, chat, mean, stddev = dvibcomp.synth_predictor(z) all_params = tf.trainable_variables() d_param_len = len(all_params) - e_param_len with tf.variable_scope("discrim") as scope: D1 = dvibcomp.synth_discriminator( input_tensor) # positive samples with tf.variable_scope("discrim", reuse=True) as scope: D2 = dvibcomp.synth_discriminator(xhat) # negative samples all_params = tf.trainable_variables() discrim_len = len(all_params) - (d_param_len + e_param_len) #Calculate losses _, KLloss = dvibloss.encoding_cost(xhat, chat, input_tensor, private_tensor, prior_tensor) loss2x, loss2c = dvibloss.recon_cost(xhat, chat, output_tensor, private_tensor, softmax=True) # Experiment with alternative approximation for MI h_c, h_cz, l_c, e_x = dvibloss.MI_approx(input_tensor, private_tensor, rawc_tensor, xhat, chat, z) I_c_cz = tf.abs(h_c - h_cz) loss_g = dvibloss.get_gen_cost(D2) loss_d = dvibloss.get_discrim_cost(D1, D2) loss1 = loss_g * encode_coef + I_c_cz loss2 = loss_g * decode_coef + loss2c loss_vae = dvibloss.get_vae_cost(mean, stddev) with tf.name_scope('pub_prediction'): with tf.name_scope('pub_distance'): pub_dist = tf.reduce_mean((xhat - output_tensor)**2) with tf.name_scope('sec_prediction'): with tf.name_scope('sec_distance'): sec_dist = tf.reduce_mean((chat - private_tensor)**2) correct_pred = tf.equal(tf.argmax(chat, axis=1), tf.argmax(private_tensor, axis=1)) sec_acc = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) optimizer = tf.train.AdamOptimizer(FLAGS.learning_rate, epsilon=1.0) e_train = pt.apply_optimizer(optimizer, losses=[loss1], regularize=True, include_marked=True, var_list=encode_params) g_train = pt.apply_optimizer( optimizer, losses=[loss2], regularize=True, include_marked=True, var_list=all_params[e_param_len:]) # generator/decoder training op d_train = pt.apply_optimizer(optimizer, losses=[loss_d], regularize=True, include_marked=True, var_list=all_params[e_param_len + d_param_len:]) # Logging matrices e_loss_train = np.zeros(FLAGS.max_epoch) g_loss_train = np.zeros(FLAGS.max_epoch) d_loss_train = np.zeros(FLAGS.max_epoch) vae_loss_train = np.zeros(FLAGS.max_epoch) pub_dist_train = np.zeros(FLAGS.max_epoch) sec_dist_train = np.zeros(FLAGS.max_epoch) loss2x_train = np.zeros(FLAGS.max_epoch) loss2c_train = np.zeros(FLAGS.max_epoch) KLloss_train = np.zeros(FLAGS.max_epoch) MIloss_train = np.zeros(FLAGS.max_epoch) sec_acc_train = np.zeros(FLAGS.max_epoch) e_loss_val = np.zeros(FLAGS.max_epoch) g_loss_val = np.zeros(FLAGS.max_epoch) d_loss_val = np.zeros(FLAGS.max_epoch) vae_loss_val = np.zeros(FLAGS.max_epoch) pub_dist_val = np.zeros(FLAGS.max_epoch) sec_dist_val = np.zeros(FLAGS.max_epoch) loss2x_val = np.zeros(FLAGS.max_epoch) loss2c_val = np.zeros(FLAGS.max_epoch) KLloss_val = np.zeros(FLAGS.max_epoch) MIloss_val = np.zeros(FLAGS.max_epoch) sec_acc_val = np.zeros(FLAGS.max_epoch) xhat_val = [] # Tensorboard logging #tf.summary.scalar('e_loss', loss_g) #tf.summary.scalar('KL', KLloss) #tf.summary.scalar('loss_x', loss2x) #tf.summary.scalar('loss_c', loss2c) #tf.summary.scalar('pub_dist', pub_dist) #tf.summary.scalar('sec_dist', sec_dist) init = tf.global_variables_initializer() saver = tf.train.Saver() # Config session for memory config = tf.ConfigProto() #config.gpu_options.allow_growth = True #config.gpu_options.per_process_gpu_memory_fraction = 0.8 config.log_device_placement = False sess = tf.Session(config=config) sess.run(init) merged = tf.summary.merge_all() train_writer = tf.summary.FileWriter(FLAGS.summary_dir + '/train', sess.graph) test_writer = tf.summary.FileWriter(FLAGS.summary_dir + '/test') for epoch in range(FLAGS.max_epoch): widgets = ["epoch #%d|" % epoch, Percentage(), Bar(), ETA()] pbar = ProgressBar(maxval=FLAGS.updates_per_epoch, widgets=widgets) pbar.start() pub_loss = 0 sec_loss = 0 sec_accv = 0 e_training_loss = 0 g_training_loss = 0 d_training_loss = 0 KLv = 0 MIv = 0 loss2xv = 0 loss2cv = 0 loss3v = 0 #pdb.set_trace() for i in range(FLAGS.updates_per_epoch): pbar.update(i) feeds = get_feed(i, True) zv, xhatv, chatv, meanv, stddevv, sec_pred = sess.run( [z, xhat, chat, mean, stddev, correct_pred], feeds) I_c_czv, h_cv, h_czv, l_cv, e_xv = sess.run( [I_c_cz, h_c, h_cz, l_c, e_x], feeds) pub_tmp, sec_tmp, sec_acc_tmp = sess.run( [pub_dist, sec_dist, sec_acc], feeds) _, e_loss_value = sess.run([e_train, loss1], feeds) _, g_loss_value = sess.run([g_train, loss2], feeds) _, d_loss_value = sess.run([d_train, loss_d], feeds) KLtmp, loss2xtmp, loss2ctmp, loss3tmp = sess.run( [KLloss, loss2x, loss2c, loss_vae], feeds) if (np.isnan(e_loss_value) or np.isnan(g_loss_value) or np.isnan(d_loss_value)): pdb.set_trace() break #train_writer.add_summary(summary, i) e_training_loss += e_loss_value g_training_loss += g_loss_value d_training_loss += d_loss_value pub_loss += pub_tmp sec_loss += sec_tmp sec_accv += sec_acc_tmp KLv += KLtmp MIv += I_c_czv loss2xv += loss2xtmp loss2cv += loss2ctmp loss3v += loss2ctmp e_training_loss = e_training_loss / \ (FLAGS.updates_per_epoch) g_training_loss = g_training_loss / \ (FLAGS.updates_per_epoch) d_training_loss = d_training_loss / \ (FLAGS.updates_per_epoch) pub_loss /= (FLAGS.updates_per_epoch) sec_loss /= (FLAGS.updates_per_epoch) sec_accv /= (FLAGS.updates_per_epoch) loss2xv /= (FLAGS.updates_per_epoch) loss2cv /= (FLAGS.updates_per_epoch) loss3v /= (FLAGS.updates_per_epoch) KLv /= (FLAGS.updates_per_epoch) print("Loss for E %f, for G %f, for D %f" % (e_training_loss, g_training_loss, d_training_loss)) print('Training public loss at epoch %s: %s' % (epoch, pub_loss)) print('Training private loss at epoch %s: %s, private accuracy: %s' % (epoch, sec_loss, sec_accv)) e_loss_train[epoch] = e_training_loss g_loss_train[epoch] = g_training_loss d_loss_train[epoch] = d_training_loss pub_dist_train[epoch] = pub_loss sec_dist_train[epoch] = sec_loss loss2x_train[epoch] = loss2xv loss2c_train[epoch] = loss2cv vae_loss_train[epoch] = loss3v KLloss_train[epoch] = KLv MIloss_train[epoch] = MIv sec_acc_train[epoch] = sec_accv # Validation if epoch % 10 == 9: pub_loss = 0 sec_loss = 0 e_val_loss = 0 g_val_loss = 0 d_val_loss = 0 loss2xv = 0 loss2cv = 0 loss3v = 0 KLv = 0 MIv = 0 sec_accv = 0 for i in range(int(FLAGS.test_dataset_size / FLAGS.batch_size)): feeds = get_feed(i, False) pub_loss += sess.run(pub_dist, feeds) sec_loss += sess.run(sec_dist, feeds) e_val_loss += sess.run(loss1, feeds) g_val_loss += sess.run(loss2, feeds) d_val_loss += sess.run(loss_d, feeds) KLtmp, loss2xtmp, loss2ctmp, sec_acc_tmp, loss3tmp = sess.run( [KLloss, loss2x, loss2c, sec_acc, loss_vae], feeds) if (epoch >= FLAGS.max_epoch - 10): xhat_val.extend(sess.run(xhat, feeds)) #test_writer.add_summary(summary, i) sec_accv += sec_acc_tmp KLv += KLtmp MIv += I_c_czv loss2xv += loss2xtmp loss2cv += loss2ctmp loss3v += loss3tmp pub_loss /= int(FLAGS.test_dataset_size / FLAGS.batch_size) sec_loss /= int(FLAGS.test_dataset_size / FLAGS.batch_size) e_val_loss /= int(FLAGS.test_dataset_size / FLAGS.batch_size) g_val_loss /= int(FLAGS.test_dataset_size / FLAGS.batch_size) d_val_loss /= int(FLAGS.test_dataset_size / FLAGS.batch_size) loss2xv /= int(FLAGS.test_dataset_size / FLAGS.batch_size) loss2cv /= int(FLAGS.test_dataset_size / FLAGS.batch_size) loss3v /= int(FLAGS.test_dataset_size / FLAGS.batch_size) KLv /= int(FLAGS.test_dataset_size / FLAGS.batch_size) sec_accv /= int(FLAGS.test_dataset_size / FLAGS.batch_size) print('Test public loss at epoch %s: %s' % (epoch, pub_loss)) print('Test private loss at epoch %s: %s' % (epoch, sec_loss)) e_loss_val[epoch] = e_val_loss g_loss_val[epoch] = g_val_loss d_loss_val[epoch] = d_val_loss pub_dist_val[epoch] = pub_loss sec_dist_val[epoch] = sec_loss loss2x_val[epoch] = loss2xv loss2c_val[epoch] = loss2cv vae_loss_val[epoch] = loss3v KLloss_val[epoch] = KLv MIloss_val[epoch] = MIv sec_acc_val[epoch] = sec_accv if not (np.isnan(e_loss_value) or np.isnan(d_loss_value)): savepath = saver.save(sess, model_directory + '/synth_privacy', global_step=epoch) print('Model saved at epoch %s, path is %s' % (epoch, savepath)) np.savez(os.path.join(model_directory, 'synth_trainstats'), e_loss_train=e_loss_train, g_loss_train=g_loss_train, d_loss_train=d_loss_train, pub_dist_train=pub_dist_train, sec_dist_train=sec_dist_train, loss2x_train=loss2x_train, loss2c_train=loss2c_train, vae_loss_train=vae_loss_train, KLloss_train=KLloss_train, MIloss_train=MIloss_train, sec_acc_train=sec_acc_train, e_loss_val=e_loss_val, g_loss_val=g_loss_val, d_loss_val=d_loss_val, pub_dist_val=pub_dist_val, sec_dist_val=sec_dist_val, loss2x_val=loss2x_val, loss2c_val=loss2c_val, vae_loss_val=vae_loss_val, KLloss_val=KLloss_val, MIloss_val=MIloss_val, sec_acc_val=sec_acc_val, xhat_val=xhat_val) sess.close()