Exemple #1
0
    def call(self, img1, img2):
        #psnr part
        psnr = psnr_cal((img1.numpy()+1.)/2.,(img2.numpy()+1.)/2.)

        #lpips part
        loss_fn_alex = lpips.LPIPS(net='alex') # best forward scores
        loss_fn_vgg = lpips.LPIPS(net='vgg') # closer to "traditional" perceptual loss, when used for optimization
        if torch.cuda.is_available():
            loss_fn_alex = loss_fn_alex.cuda()
            loss_fn_vgg = loss_fn_vgg.cuda()
            img1 = img1.cuda()
            img2 = img2.cuda()
        lpips_value_alex = loss_fn_alex(img1, img2)
        lpips_value_vgg = loss_fn_vgg(img1, img2)

        # img1_01 = (img1.numpy()+1.)/2.
        # img2_01 = (img2.numpy()+1.)/2.



        #ssim part
        #if torch.cuda.is_available():
        #    img1 = img1.cuda()
        #    img2 = img2.cuda()

        #print(pytorch_ssim.ssim(img1, img2))

        ssim_loss = pytorch_ssim.SSIM(window_size = 11)
        ssim_value = ssim_loss(img1, img2)

        return lpips_value_alex,lpips_value_vgg, psnr, ssim_value
Exemple #2
0
 def __init__(self,device,metrics = 'ssim,msssim,mse,psnr') -> None:
     self.metrics = metrics
     self.device = device
     if(('lpipsVGG' in metrics)):
         self.lpipsVGG = lpips.LPIPS(net='vgg').to(device)
     if(('lpipsAlex' in metrics)):
         self.lpipsAlex = lpips.LPIPS(net='alex').to(device)
Exemple #3
0
    def setUp(self):
        # initialize evaluation dataset/dataloader
        torch.manual_seed(42)

        stack = contextlib.ExitStack()
        dataset_root, path_manager = stack.enter_context(get_skateboard_data())
        self.addCleanup(stack.close)

        category = "skateboard"
        frame_file = os.path.join(dataset_root, category, "frame_annotations.jgz")
        sequence_file = os.path.join(dataset_root, category, "sequence_annotations.jgz")
        self.image_size = 256
        self.dataset = ImplicitronDataset(
            frame_annotations_file=frame_file,
            sequence_annotations_file=sequence_file,
            dataset_root=dataset_root,
            image_height=self.image_size,
            image_width=self.image_size,
            box_crop=True,
            path_manager=path_manager,
        )
        self.bg_color = 0.0

        # init the lpips model for eval
        provide_lpips_vgg()
        self.lpips_model = lpips.LPIPS(net="vgg")
Exemple #4
0
    def __init__(self) -> None:
        super(LPIPSLoss, self).__init__()
        self.feature_extract = lpips.LPIPS(net="vgg", verbose=False).eval()

        # Freeze model all parameters. Don't train.
        for name, parameters in self.feature_extract.named_parameters():
            parameters.requires_grad = False
Exemple #5
0
 def __init__(self,
              model='net-lin',
              net='vgg',
              use_gpu=True,
              spatial=False):
     super(LPIPS_Loss, self).__init__()
     self.model = lpips.LPIPS(net=net, spatial=spatial).eval()
Exemple #6
0
def image_quality_evaluation(sr_filename: str, hr_filename: str, device: torch.device = "cpu"):
    """Image quality evaluation function.

    Args:
        sr_filename (str): Image file name after super resolution.
        hr_filename (str): Original high resolution image file name.
        device (optional, torch.device): Selection of data processing equipment in PyTorch. (Default: ``cpu``).

    Returns:
        If the `simple` variable is set to ``False`` return `mse, rmse, psnr, ssim, msssim, niqe, sam, vifp, lpips`,
        else return `psnr, ssim`.
    """
    # Reference sources from `https://github.com/richzhang/PerceptualSimilarity`
    lpips_loss = lpips.LPIPS(net="vgg", verbose=False).to(device)
    # Evaluate performance
    sr = cv2.imread(sr_filename)
    hr = cv2.imread(hr_filename)

    # For LPIPS evaluation
    sr_tensor = opencv2tensor(sr, device)
    hr_tensor = opencv2tensor(hr, device)

    # Complete estimate.
    mse_value = mse(sr, hr)
    rmse_value = rmse(sr, hr)
    psnr_value = psnr(sr, hr)
    ssim_value = ssim(sr, hr)
    msssim_value = msssim(sr, hr)
    niqe_value = niqe(sr_filename)
    sam_value = sam(sr, hr)
    vifp_value = vifp(sr, hr)
    lpips_value = lpips_loss(sr_tensor, hr_tensor)
    return mse_value, rmse_value, psnr_value, ssim_value, msssim_value, niqe_value, sam_value, vifp_value, lpips_value
Exemple #7
0
    def __init__(self, options):
        self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        self.options = options

        self.test_ds = get_dataset_from_options(self.options, is_train=False)

        self.model = get_model_from_options(self.options)
        self.models_dict = {'model':self.model}

        self.models_dict = {k:v.to(self.device)
                for k,v in self.models_dict.items()}

        self.optimizers_dict = {}
        # Load the latest checkpoints
        self.saver = CheckpointSaver(save_dir=options.checkpoint_dir)
        self.checkpoint = None
        if self.saver.exists_checkpoint():
            self.checkpoint = self.saver.load_checkpoint(self.models_dict,
                    self.optimizers_dict,
                    checkpoint_file=self.options.checkpoint)
        else:
            print("No checkpoint found.  The program  will exit")

        for model in self.models_dict:
            self.models_dict[model].eval()

        self.metrics = {'lpips': lpips.LPIPS(net='alex').cuda(),
                        'mse': torch.nn.MSELoss()
                        }

        self.images_to_save = ['target_frames', 'pred', 'generator/object_pixels']

        self.image_path = "out_images"
 def __init__(self,
              net='vgg',
              eval_mode=True,
              pooling=True,
              normalize=False,
              layer_res=None):
     super(LPIPF, self).__init__()
     # Using composition instead of inheritance because of path issues...
     self.ps = lpips.LPIPS(net=net, eval_mode=eval_mode)
     assert self.ps.lpips
     assert pooling or not layer_res
     self.pooling = pooling
     self.normalize = normalize
     if layer_res:
         self.layer_res = {net: layer_res}
     else:
         self.layer_res = {
             'vgg': [8, 4, 2, 2, 1],
             # 'vgg': [16, 8, 4, 4, 2],
             # 'vgg': [32, 16, 8, 8, 4],
             # 'vgg': [64, 32, 16, 16, 8],
             # 'vgg': [128, 64, 32, 16, 8], # No Pooling
             'alex': [7, 3, 3, 1, 1],
             # 'alex': [15, 7, 7, 7, 7],
             # 'alex': [31, 15, 7, 7, 7],  # No pooling
         }
Exemple #9
0
 def __init__(self, loss_lambda=0.5):
     super(LPIPSLoss_L1, self).__init__()
     self.similarity = lpips.LPIPS(net='vgg').cuda()
     self.l1_loss = nn.L1Loss()
     # self.similarity = LPIPS(network='vgg').cuda()
     # self.l2_loss = nn.MSELoss()
     self.loss_lambda = loss_lambda
Exemple #10
0
    def __init__(self,
                 data_set: EvalDataSet,
                 ssim_psnr=True,
                 fft_root=None,
                 layer_map_root=None,
                 tf_backend=False,
                 mse=False,
                 mae=False,
                 lpips_flag=False,
                 sample_num=None):
        """

        :param data_set:
        :param fft_root:  None or 'full path', None to skip
        :param layer_map_root: same as fft_root
        """
        self.data_set = data_set
        self.fft_root = fft_root
        self.layer_map_root = layer_map_root
        self.tf_backend = tf_backend
        self.ssim_psnr_flag = ssim_psnr
        self.mse = mse
        self.mae = mae
        self.lpips_flag = lpips_flag
        self.check_path(fft_root)
        self.check_path(layer_map_root)
        self.sample_num = len(data_set) if sample_num is None else sample_num
        self.lpips_alex = lpips.LPIPS(net='alex').cuda()
Exemple #11
0
 def __init__(self, net, layers=None, use_dropout=True):
     super(LayerLoss, self).__init__()
     assert net in ['alex', 'vgg', 'squeeze']
     self.net = lpips.LPIPS(pretrained=True,
                            net=net,
                            lpips=False,
                            use_dropout=use_dropout).net
     self.layers = layers
Exemple #12
0
def criterions(name):
    if name == "mse":
        return nn.MSELoss()
    elif name == "l1":
        return nn.L1Loss()
    elif name == "lpips":
        return lpips.LPIPS(net="vgg").cuda()
    elif name == "ms_ssim":
        return MS_SSIM(data_range=1.0)
Exemple #13
0
 def __init__(self, dtype, weight_pb=None):
     """
     Args:
         dtype (str or numpy.dtype): Data type, from which maximum allowed
             will be derived.
         weight_pb (str, optional): Path to the network weight protobuf.
             Defaults to the bundled ``net-lin_alex_v0.1.pb``.
     """
     self.lpips = lpips.LPIPS(net='alex')
def get_close_far_members(args):

    with torch.no_grad():
        lpips_fn = lpips.LPIPS(net='vgg').to(device)
        preprocess = transforms.Compose([
            transforms.Resize([256, 256]),
            transforms.ToTensor(),
            transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
        ])
        cluster_size = 50
        base_path = os.path.join("cluster_centers", "%s" % (args.dataset),
                                 "%s" % (args.baseline))
        avg_dist = torch.zeros([
            10,
        ])
        for k in range(10):
            curr_path = os.path.join(base_path, "c%d" % (k))
            files_list = os.listdir(curr_path)
            files_list.remove('center.png')

            random.shuffle(files_list)
            files_list = files_list[:cluster_size]
            dists = []
            min_dist, max_dist = 1000.0, 0.0
            min_ind, max_ind = 0, 0
            # center image
            input1_path = os.path.join(curr_path, 'center.png')
            input_image1 = Image.open(input1_path)
            input_tensor1 = preprocess(input_image1)
            input_tensor1 = input_tensor1.to(device)

            for i in range(len(files_list)):
                input2_path = os.path.join(curr_path, files_list[i])
                input_image2 = Image.open(input2_path)
                input_tensor2 = preprocess(input_image2)
                input_tensor2 = input_tensor2.to(device)
                dist = lpips_fn(input_tensor1, input_tensor2)
                if dist <= min_dist:
                    min_ind = i
                    min_dist = dist
                if dist >= max_dist:
                    max_ind = i
                    max_dist = dist

            print(min_ind, max_ind)
            if len(files_list) > 0:
                # saving the closest member
                path_closest = os.path.join(curr_path, files_list[min_ind])
                new_closest = os.path.join(curr_path, 'closest.png')
                os.system("cp %s %s" % (path_closest, new_closest))

                # saving the farthest member
                path_farthest = os.path.join(curr_path, files_list[max_ind])
                new_farthest = os.path.join(curr_path, 'farthest.png')
                os.system("cp %s %s" % (path_farthest, new_farthest))
            else:
                print("no members in cluster %d" % (k))
Exemple #15
0
    def __init__(self, net='alex', if_spatial=False, if_cuda=True):
        super().__init__()
        import lpips

        self.lpips_fn = lpips.LPIPS(net=net, spatial=if_spatial)
        if if_cuda:
            self.lpips_fn.cuda()

        self.lsb = True
Exemple #16
0
def eval_octree(t, dataset, args, want_lpips=True, want_frames=False):
    import svox
    w, h, focal = dataset.w, dataset.h, dataset.focal
    if 'llff' in args.config and (not args.spherify):
        ndc_config = svox.NDCConfig(width=w, height=h, focal=focal)
    else:
        ndc_config = None

    r = svox.VolumeRenderer(t,
                            step_size=args.renderer_step_size,
                            ndc=ndc_config)

    print('Evaluating octree')
    device = t.data.device
    if want_lpips:
        import lpips
        lpips_vgg = lpips.LPIPS(net="vgg").eval().to(device)

    avg_psnr = 0.0
    avg_ssim = 0.0
    avg_lpips = 0.0
    out_frames = []
    for idx in tqdm(range(dataset.size)):
        c2w = torch.from_numpy(dataset.camtoworlds[idx]).float().to(device)
        im_gt_ten = torch.from_numpy(dataset.images[idx]).float().to(device)

        im = r.render_persp(c2w,
                            width=w,
                            height=h,
                            fx=focal,
                            fast=not args.no_early_stop)
        im.clamp_(0.0, 1.0)

        mse = ((im - im_gt_ten)**2).mean()
        psnr = compute_psnr(mse).mean()
        ssim = compute_ssim(im, im_gt_ten, max_val=1.0).mean()

        avg_psnr += psnr.item()
        avg_ssim += ssim.item()
        if want_lpips:
            lpips_i = lpips_vgg(im_gt_ten.permute([2, 0, 1]).contiguous(),
                                im.permute([2, 0, 1]).contiguous(),
                                normalize=True)
            avg_lpips += lpips_i.item()

        if want_frames:
            im = im.cpu()
            # vis = np.hstack((im_gt_ten.cpu().numpy(), im.cpu().numpy()))
            vis = im.cpu().numpy()  # for lpips calculation
            vis = (vis * 255).astype(np.uint8)
            out_frames.append(vis)

    avg_psnr /= dataset.size
    avg_ssim /= dataset.size
    avg_lpips /= dataset.size
    return avg_psnr, avg_ssim, avg_lpips, out_frames
 def init():
     global transform, loss_fn_alex, device
     transform = transforms.Compose([
         transforms.ToTensor(),
         transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
     ])
     loss_fn_alex = lpips_ori.LPIPS(net='alex')
     if torch.cuda.is_available():
         loss_fn_alex.cuda()
     device = next(loss_fn_alex.parameters()).device
Exemple #18
0
def evalNetQuant(netWeights, batchSz=4, isPM=False):
    """Evaluate the network quantitatively over the entire validation set"""

    ## Load Model for training:
    device = "cuda" if torch.cuda.is_available() else "cpu"
    model = centerEsti()
    model.load_state_dict(netWeights)
    model.to(device)

    valSet = getSetLoader(SetType.test, batchSz)

    totPsnr = 0
    totSsim = 0
    percSimAlex = 0
    percSimVgg = 0

    lossAlex = lpips.LPIPS(net='alex').to(device)  # best forward scores
    lossVgg = lpips.LPIPS(net='vgg').to(device)  # closer to "traditional" perceptual loss, when used for optimization

    transRes = lambda x: x.to("cpu").numpy() / len(valSet)
    model.eval()
    valProg = tqdm(valSet, desc='Test', leave=False, ncols=100)
    with torch.no_grad():
        for y, x in valProg:
            if not isPM:
                y = x.mean(axis=1)  # TODO: Verify if correct!

            nFrames = x.shape[1]
            midFrame = int(np.floor(nFrames / 2))

            inputs, targets = y.to(device), x[:, midFrame, :, :].to(device)
            outputs = model(inputs)

            ## Loss Calculation:
            curPsnr, curSsim = evalImgQuant(targets, outputs)

            totPsnr += curPsnr
            totSsim += curSsim

            percSimAlex += percSim(targets[0], outputs[0], lossAlex)
            percSimVgg += percSim(targets[0], outputs[0], lossVgg)

    return transRes(totPsnr), transRes(totSsim), transRes(percSimAlex), transRes(percSimVgg)
Exemple #19
0
    def __init__(self,
                 segmenter,
                 dynamics_model,
                 generator,
                 accumulate_flows=False,
                 detach_extractor=False,
                 recon_from_first=False,
                 coord_loss_scale=1.0,
                 patch_loss_scale=1.0,
                 mask_patch_loss=False,
                 seg_loss_scale=1.0,
                 pred_attn_loss_scale=1.0,
                 pred_loss_scale=1.0,
                 dataset="robonet",
                 feature_extractor="precropped"):
        super().__init__()

        self._segmenter = segmenter
        self._dynamics_model = dynamics_model
        self._generator = generator

        self._accumulate_flows = accumulate_flows
        self._coord_loss_scale = coord_loss_scale
        self._patch_loss_scale = patch_loss_scale
        self._detach_extractor = detach_extractor
        self._recon_from_first = recon_from_first
        self._mask_patch_loss = mask_patch_loss
        self._seg_loss_scale = seg_loss_scale
        self._pred_attn_loss_scale = pred_attn_loss_scale
        self._pred_loss_scale = pred_loss_scale
        self._lpips = lpips.LPIPS(net='alex')  #.cuda()

        self.dataset = dataset
        self.feature_extractor = feature_extractor

        # attn loss
        self.l1_loss = nn.L1Loss(
            reduction="sum")  # manually normalizing based on size of mask
        self.mse_loss = nn.MSELoss()

        self._mask_patch_loss = mask_patch_loss

        self._lpips = lpips.LPIPS(net='alex').cuda()
Exemple #20
0
def main():
    args = get_args()
    img_size = args.eval_image_size
    src_dir = args.src_dir
    num_samples = args.num_samples

    l1_loss_fn = nn.L1Loss()
    loss_fn_vgg = lpips.LPIPS(net='vgg')

    l1_results = np.empty(num_samples)
    ssim_results = np.empty(num_samples)
    lpips_results = np.empty(num_samples)

    transforms = trafo.Compose(
        [trafo.ToTensor(),
         trafo.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

    for idx in range(num_samples):
        idx_str = "{:05d}".format(idx)

        # reads images as (height,width,channel)
        im_pred = imageio.imread("{}/{}_pred.png".format(src_dir, idx_str))
        im_true = imageio.imread("{}/{}_tgt.png".format(src_dir, idx_str))

        # normalize the values to be [-1,1]
        im_pred_torch = transforms(im_pred).unsqueeze(0)
        im_true_torch = transforms(im_true).unsqueeze(0)

        # resize images to be at the desired resolution if not already
        if not args.no_resize and (im_pred_torch.shape[-1] != img_size
                                   or im_true_torch.shape[-1] != img_size):
            im_pred_torch = F.interpolate(im_pred_torch, (img_size, img_size))
            im_true_torch = F.interpolate(im_true_torch, (img_size, img_size))

        # compute l1 error
        l1_loss = l1_loss_fn(im_pred_torch, im_true_torch)
        l1_results[idx] = l1_loss

        # compute ssim error
        ssim_loss = ssim(im_pred_torch, im_true_torch)
        ssim_results[idx] = ssim_loss

        # Compute lpips score
        lp = loss_fn_vgg(im_pred_torch, im_true_torch)
        lpips_results[idx] = lp

        if idx % 1000 == 0:
            print(
                f"{idx}, im dim: {im_pred_torch.shape[-1]} -- l1, ssim loss, lpips: {l1_loss, ssim_loss, lp}"
            )

    print(f"L1 loss mean: {l1_results.mean()}, std: {l1_results.std()}")
    print(f"SSIM loss mean: {ssim_results.mean()}, std: {ssim_results.std()}")
    print(f"LPIPS score: {lpips_results.mean()}, std: {lpips_results.std()}")
Exemple #21
0
    def __init__(self, generator, z_size, lr, device, target_image, logProbWeight=0.0, shiftLossWeight=1.0, loss_type="default"):
        self.logProbWeight = logProbWeight
        self.loss_type = loss_type
        self.generator = generator
        self.z_size = z_size
        self.z_pdf = torch.distributions.Normal(0, 1)

        # Latent Vector to optimize over
        self.z_vec = torch.randn(1, z_size, 1, 1, device=device).clone().detach()
        self.z_vec.requires_grad = True

        # Affine transformation variables to optimize over
        self.dy = torch.tensor(0.0).clone().detach()  # Shift image in y direction. (+) -> down, (-) -> up, range [-1, 1]
        self.dy.requires_grad = True
        self.dx = torch.tensor(0.0).clone().detach()  # Shift image in x direction. (+) -> right, (-) -> left, range [-1, 1]
        self.dx.requires_grad = True
        self.scale = torch.tensor(0.0).clone().detach()  # Zoom in or out. (+) -> zoom in, (-) -> zoom out, range [-1, 1]
        self.scale.requires_grad = True
        self.rot = torch.tensor(0.0).clone().detach()  # Rotate image. (+) -> Clockwise, (-) -> Counterclockwise
        self.rot.requires_grad = True
        self.shiftLossWeight = shiftLossWeight

        # Define optimizer and params to optimize over
        self.params = [self.z_vec]

        # Add affine parameters if affine loss is specified
        if "affine" in self.loss_type:
            self.params.extend([self.dx, self.dy])

            if "scale" in self.loss_type:
                self.params.extend([self.scale])

            if "rot" in self.loss_type:
                self.params.extend([self.rot])

        self.optim = torch.optim.Adam(self.params, lr=lr, betas=(0.9, 0.99))
        #self.optim = torch.optim.SGD(self.params, lr=lr, momentum=0.9)
        #self.scheduler = CosineAnnealingWarmRestarts(self.optim, 100, 1)
        #self.scheduler = CyclicLR(self.optim, base_lr=1e-2, max_lr=0.1, step_size_up=500)
        self.target_image = target_image

        # Gradient Convolution Kernels
        self.kernel_x = torch.FloatTensor([[-1, 0, 1],
                                       [-1, 0, 1],
                                       [-1, 0, 1]]).unsqueeze(0).unsqueeze(0).to(device)
        self.kernel_y = torch.FloatTensor([[-1, -1, -1],
                                       [0, 0, 0],
                                       [1, 1, 1]]).unsqueeze(0).unsqueeze(0).to(device)
        self.lapacian_operator = torch.FloatTensor([[0, 1, 0],
                                                [1, -4, 1],
                                                [0, 1, 0]]).unsqueeze(0).unsqueeze(0).to(device)

        if 'lpips' in self.loss_type:
            self.lpips_loss = lpips.LPIPS(net='vgg').to(device)
Exemple #22
0
 def __init__(self, net, type="mae"):
     super(SelfSupDisReconLoss, self).__init__()
     assert type in ["mse", "mae", "perceptual"]
     if type == "mse":
         self.loss = nn.MSELoss(reduction="mean")
     elif type == "mae":
         self.loss = nn.L1Loss(reduction="mean")
     # TODO: Check device casting
     elif type == "perceptual":
         self.loss = lpips.LPIPS(net='vgg', verbose=False)
     self.net = net
    def __init__(self, net='vgg', use_gpu=True):
        """ LPIPS loss with spatial weighting """
        super(PerceptualLoss, self).__init__()
        self.loss_fn = lpips.LPIPS(net=net, spatial=True)

        if use_gpu:
            self.loss_fn = self.loss_fn.cuda()

        # current pip version does not support DataParallel
        # self.loss_fn = nn.DataParallel(self.loss_fn)
        return
Exemple #24
0
def calculate_lpips(img1, img2, crop_border, input_order='HWC'):
    """Calculate LPIPS metric.

    We use the official params estimated from the pristine dataset.
    We use the recommended block size (96, 96) without overlaps.

    Args:
        img (ndarray): Input image whose quality needs to be computed.
            The input image must be in range [0, 255] with float/int type.
            The input_order of image can be 'HW' or 'HWC' or 'CHW'. (BGR order)
            If the input order is 'HWC' or 'CHW', it will be converted to gray
            or Y (of YCbCr) image according to the ``convert_to`` argument.
        crop_border (int): Cropped pixels in each edge of an image. These
            pixels are not involved in the metric calculation.
        input_order (str): Whether the input order is 'HW', 'HWC' or 'CHW'.
            Default: 'HWC'.

    Returns:
        float: LPIPS result.
    """

    assert img1.shape == img2.shape, (
        f'Image shapes are differnet: {img1.shape}, {img2.shape}.')
    if input_order not in ['HWC', 'CHW']:
        raise ValueError(
            f'Wrong input_order {input_order}. Supported input_orders are '
            '"HWC" and "CHW"')
    img1 = reorder_image(img1, input_order=input_order)
    img2 = reorder_image(img2, input_order=input_order)
    img1 = img1.astype(np.float64)
    img2 = img2.astype(np.float64)

    if crop_border != 0:
        img1 = img1[crop_border:-crop_border, crop_border:-crop_border, ...]
        img2 = img2[crop_border:-crop_border, crop_border:-crop_border, ...]

    img1 = img1.astype(np.float32)
    img2 = img2.astype(np.float32)

    img1, img2 = totensor([img1, img2], bgr2rgb=False, float32=True)

    img1 = img1.unsqueeze(0)
    img2 = img2.unsqueeze(0)

    # image should be RGB, IMPORTANT: normalized to [-1,1]
    img1 = (img1 / 255. - 0.5) * 2
    img2 = (img2 / 255. - 0.5) * 2

    loss_fn_alex = lpips.LPIPS(net='alex',
                               verbose=False)  # best forward scores

    metric = loss_fn_alex(img1, img2).squeeze(0).float().detach().cpu().numpy()
    return metric.mean()
Exemple #25
0
def calculate_lpips(img1, img2):
    # img1 and img2 have range [0, 255]
    loss_fn_vgg = lpips.LPIPS(net='vgg')
    img1 = img1[np.newaxis, :]
    img2 = img2[np.newaxis, :]

    img1 = img1.transpose(0, 3, 2, 1)
    img2 = img2.transpose(0, 3, 2, 1)

    img1 = torch.from_numpy(2 * (img1 / 255) - 1).float()
    img2 = torch.from_numpy(2 * (img2 / 255) - 1).float()
    return loss_fn_vgg(img1, img2).detach().numpy().flatten()[0]
Exemple #26
0
 def __init__(self, imgs_limit=50, sample_size=5, num_simulations=1):
     self.lpips = 0
     self.psnr = 0
     self.ssim = 0
     self.imgs_limit = imgs_limit
     self.sample_size = sample_size
     self.num_simulations = num_simulations
     self.base_path = '/Volumes/LaCie SSD/cassava-leaf-disease-classification'
     self.imgpack = LoadImageDataset(self.base_path, 'train_images',
                                     'test_images', self.imgs_limit)
     self.loss_fn = lpips.LPIPS(net='alex', version='0.1')
     self.run()
Exemple #27
0
def lpips_calculate(x, y, net='alex', gpu=True):
    # input range is 0~255
    # image should be RGB, and normalized to [-1,1]
    x = im2tensor(x[:, :, ::-1])
    y = im2tensor(y[:, :, ::-1])
    loss_fn = lpips.LPIPS(net=net, verbose=False)
    if gpu:
        x = x.cuda()
        y = y.cuda()
        loss_fn = loss_fn.cuda()
    lpips_value = loss_fn(x, y)
    return lpips_value.item()
Exemple #28
0
    def __init__(self, device, G_mapping, G_synthesis, E):
        super().__init__()
        self.device = device
        self.G_mapping = G_mapping
        self.G_synthesis = G_synthesis
        self.E = E
        
        self.lpips_loss = lpips.LPIPS(net='vgg').to(device)
        self.mse_loss = nn.MSELoss().to(device)
        #self.l1_loss = nn.SmoothL1Loss().to(device)

        self.lambda1 = 0.02
        self.lambda2 = 0.3
Exemple #29
0
 def __init__(self, net='vgg', use_gpu=True, precision='float'):
     """ LPIPS loss with spatial weighting """
     super(Masked_LPIPS_Loss, self).__init__()
     self.lpips = lpips.LPIPS(net=net, spatial=True).eval()
     if use_gpu:
         self.lpips = nn.DataParallel(self.lpips).cuda()
     if precision == 'half':
         self.lpips.half()
     elif precision == 'float':
         self.lpips.float()
     elif precision == 'double':
         self.lpips.double()
     return
    def __init__(self, net='vgg', device='cuda'):
        '''
    net: ['alex', 'vgg']
    References:
    https://github.com/richzhang/PerceptualSimilarity/blob/master/lpips_2imgs.py

    '''
        import lpips

        self.device = device

        ## Initializing the model
        self.loss_fn = lpips.LPIPS(net=net)
        self.loss_fn = self.loss_fn.to(device).eval()
        pass