Exemple #1
0
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

import numpy as np
from lpot.utils.utility import LazyImport
from .transform import transform_registry, BaseTransform
tf = LazyImport('tensorflow')
cv2 = LazyImport('cv2')

@transform_registry(transform_type="QuantizedInput", \
                    process="preprocess", framework="tensorflow")
class QuantizedInput(BaseTransform):
    """Convert the dtype of input to quantize it.

    Args:
        dtype(str): desired image dtype, support 'uint8', 'int8'
        scale(float, default=None):scaling ratio of each point in image

    Returns:
        tuple of processed image and label
    """
    def __init__(self, dtype, scale=None):
Exemple #2
0
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from abc import abstractmethod
from lpot.utils.utility import LazyImport, singleton
from ..utils import logger
from sklearn.metrics import accuracy_score, f1_score
import numpy as np

torch_ignite = LazyImport('ignite')
torch = LazyImport('torch')
tf = LazyImport('tensorflow')
mx = LazyImport('mxnet')


@singleton
class TensorflowMetrics(object):
    def __init__(self):
        self.metrics = {
            "Accuracy": WrapTensorflowMetric(
                tf.keras.metrics.Accuracy),
            "Sum": WrapTensorflowMetric(
                tf.keras.metrics.Sum,
                True),
            "Mean": WrapTensorflowMetric(
Exemple #3
0
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from abc import abstractmethod
import functools

from lpot.utils.utility import LazyImport, singleton
torchvision = LazyImport('torchvision')
tf = LazyImport('tensorflow')
mx = LazyImport('mxnet')


@singleton
class TensorflowDatasets(object):
    def __init__(self):
        self.datasets = {
            "cifar10": tf.keras.datasets.cifar10,
            "cifar100": tf.keras.datasets.cifar100,
            "fashion_mnist": tf.keras.datasets.fashion_mnist,
            "imdb": tf.keras.datasets.imdb,
            "mnist": tf.keras.datasets.mnist,
            "reuters": tf.keras.datasets.reuters,
            "list_files": tf.data.Dataset.list_files,
Exemple #4
0
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import os
import re
import numpy as np
from PIL import Image
from lpot.utils.utility import LazyImport
from lpot.utils import logger
from .dataset import dataset_registry, IterableDataset, Dataset
tf = LazyImport('tensorflow')
mx = LazyImport('mxnet')
torch = LazyImport('torch')

@dataset_registry(dataset_type="ImagenetRaw", framework="onnxrt_qlinearops, \
                    onnxrt_integerops", dataset_format='')
class ImagenetRaw(Dataset):
    """Configuration for Imagenet Raw dataset.

    Please arrange data in this way:  
        data_path/img1.jpg  
        data_path/img2.jpg  
        ...  
        data_path/imgx.jpg  
    dataset will read name and label of each image from image_list file, 
    if user set image_list to None, it will read from data_path/val_map.txt automatically.
Exemple #5
0
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import copy
import logging
from collections import OrderedDict
import yaml
import numpy as np
from lpot.adaptor.adaptor import adaptor_registry, Adaptor
from lpot.adaptor.query import QueryBackendCapability
from lpot.utils.utility import LazyImport, dump_elapsed_time

onnx = LazyImport("onnx")
ort = LazyImport("onnxruntime")

logger = logging.getLogger()


class ONNXRTAdaptor(Adaptor):
    """The ONNXRT adaptor layer, do onnx-rt quantization, calibration, inspect layer tensors.

    Args:
        framework_specific_info (dict): framework specific configuration for quantization.
    """
    def __init__(self, framework_specific_info):
        super().__init__(framework_specific_info)
        self.__config_dict = {}
        self.quantizable_ops = []
Exemple #6
0
# You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from .dataset import dataset_registry, Dataset
import numpy as np
from lpot.utils.utility import LazyImport
import logging

mx = LazyImport('mxnet')
torch = LazyImport('torch')

@dataset_registry(dataset_type="dummy", framework="tensorflow, onnxrt_qlinearops, \
                  onnxrt_integerops, pytorch, pytorch_ipex, mxnet", dataset_format='')
class DummyDataset(Dataset):
    """Dataset used for dummy data generation.
       This Dataset is to construct a dataset from a specific shape.
       the value range is calculated from: low * stand_normal(0, 1) + high
       (TODO) construct dummy data from real dataset or iteration of data.

    Args: shape (list or tuple):support create multi shape tensors, use list of tuples
                                for each tuple in the list, will create a such size tensor.
          low (list or float, default=-128.):low out the tensor value range from [0, 1] 
                                            to [0, low] or [low, 0] if low < 0, if float, 
                                            will implement all tensors with same low value.  
Exemple #7
0
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import copy
import os
from abc import abstractmethod
from lpot.utils.utility import LazyImport, compute_sparsity
from lpot.utils import logger
from lpot.conf.dotdict import deep_get, deep_set
from lpot.conf import config as cfg
from lpot.model.base_model import BaseModel
from lpot.model.onnx_model import ONNXModel

torch = LazyImport('torch')
tf = LazyImport('tensorflow')
mx = LazyImport('mxnet')
onnx = LazyImport('onnx')
ort = LazyImport("onnxruntime")
yaml = LazyImport('yaml')
json = LazyImport('json')

tensor_to_node = lambda s: list(set([x.split(':')[0] for x in s]))


def get_model_type(model):
    """Get mode type

    Args:
        model (string or model object): model path or model object
Exemple #8
0
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

import numpy as np
from lpot.utils.utility import LazyImport
from .transform import transform_registry, Transform
tf = LazyImport('tensorflow')

@transform_registry(transform_type="ParseDecodeImagenet", \
                    process="preprocess", framework="tensorflow")
class ParseDecodeImagenetTransform(Transform):
    def __call__(self, sample):
        # Dense features in Example proto.
        feature_map = {
            'image/encoded':
            tf.io.FixedLenFeature([], dtype=tf.string, default_value=''),
            'image/class/label':
            tf.io.FixedLenFeature([1], dtype=tf.int64, default_value=-1)
        }

        sparse_float32 = tf.io.VarLenFeature(dtype=tf.float32)
        # Sparse features in Example proto.
Exemple #9
0
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from abc import abstractmethod
import os
from lpot.utils.utility import LazyImport, singleton
from PIL import Image
torch = LazyImport('torch')
torchvision = LazyImport('torchvision')
tf = LazyImport('tensorflow')
mx = LazyImport('mxnet')
np = LazyImport('numpy')
hashlib = LazyImport('hashlib')
gzip = LazyImport('gzip')
tarfile = LazyImport('tarfile')
zipfile = LazyImport('zipfile')
pickle = LazyImport('pickle')
glob = LazyImport('glob')


@singleton
class TensorflowDatasets(object):
    def __init__(self):
Exemple #10
0
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from abc import abstractmethod
from lpot.utils.utility import LazyImport, singleton

torch = LazyImport('torch')
tf = LazyImport('tensorflow')


@singleton
class TensorflowCriterions(object):
    def __init__(self):
        self.criterions = {}
        self.criterions.update(TENSORFLOW_CRITERIONS)


@singleton
class PyTorchCriterions(object):
    def __init__(self):
        self.criterions = {}
        self.criterions.update(PYTORCH_CRITERIONS)
Exemple #11
0
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
from lpot.utils.utility import LazyImport
from .base_dataloader import BaseDataLoader

torch = LazyImport('torch')


class PyTorchDataLoader(BaseDataLoader):
    def _generate_dataloader(self, dataset, batch_size, last_batch, collate_fn,
                             sampler, batch_sampler, num_workers, pin_memory):
        drop_last = False if last_batch == 'rollover' else True
        return torch.utils.data.DataLoader(dataset,
                                           batch_size=batch_size,
                                           collate_fn=collate_fn,
                                           drop_last=drop_last,
                                           num_workers=num_workers,
                                           pin_memory=pin_memory,
                                           sampler=sampler,
                                           batch_sampler=batch_sampler)
Exemple #12
0
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import collections
import numpy as np
from lpot.utils.utility import LazyImport
from .base_dataloader import BaseDataLoader
import logging

mx = LazyImport('mxnet')


class MXNetDataLoader(BaseDataLoader):
    def _generate_dataloader(self, dataset, batch_size, last_batch, collate_fn,
                             sampler, batch_sampler, num_workers, pin_memory,
                             shuffle):
        if shuffle:
            logging.warning('Shuffle is not supported yet in MXNetDataLoader, ' \
                            'ignoring shuffle keyword.')
        drop_last = False if last_batch == 'rollover' else True
        return mx.gluon.data.DataLoader(dataset,
                                        batch_size=batch_size,
                                        batchify_fn=collate_fn,
                                        last_batch=last_batch,
                                        num_workers=num_workers,
# See the License for the specific language governing permissions and
# limitations under the License.

from lpot.utils.utility import LazyImport
from abc import abstractmethod
import collections
import numpy as np
from .sampler import IterableSampler, SequentialSampler, BatchSampler
from .fetcher import FETCHERS
from .default_dataloader import default_collate
from .default_dataloader import DefaultDataLoader
from ..datasets.bert_dataset import TensorflowBertDataset
from .base_dataloader import BaseDataLoader
from ..datasets.coco_dataset import COCORecordDataset

tf = LazyImport('tensorflow')
lpot = LazyImport('lpot')


class TFDataDataLoader(BaseDataLoader):
    """In tensorflow1.x dataloader is coupled with the graph, but it also support feed_dict
       method to do session run, this dataloader is designed to satisfy the usage of feed dict
       in tf1.x. Although it's a general dataloader and can be used in MXNet and PyTorch.

    """
    def __init__(self, dataset, batch_size=1, last_batch='rollover'):

        self.dataset = dataset
        self.last_batch = last_batch
        self._batch_size = batch_size
        dataset = dataset.batch(batch_size)